Описание регулируемого стабилитрона TL431. Схемы включения, цоколевка, аналоги, datasheet. Замена ультразвуковой мембраны в увлажнителе воздуха своими руками Электрическая схема сигнализатора температуры и влажности 8803

Для многих производственных процессов очень важно поддерживать необходимый микроклимат, в частности, определенное содержание паров воды в воздухе или газе. Для этой цели используются такие приборы, как гигрометр и гигростат. Первые измеряют содержание водяных паров, вторые поддерживают их необходимый уровень. На рисунке 1 показано устройство Роса-10, используемое как в промышленности, так и сельском хозяйстве.

Рисунок 1. Отечественные приборы Роса-10 в различном исполнении

Но датчик влажности применяется не только в производстве (например, для определения характеристик древесины), с его помощью можно регулировать сухость воздуха в помещении (рис.2), измерять насыщение почвы водой и т.д. Предлагаем рассмотреть устройство и принцип работы таких приборов. Это существенно поможет их правильному применению в бытовой сфере, например, чтобы сделать вытяжной вентилятор в ванную, терморегулятор для бани или самодельный датчик температуры и влажности в теплицу.


Рисунок 2. Все современные климатические системы снабжены модулем, измеряющим влажность

Прежде чем перейти к теории, определимся с терминологией.

Терминология

Под абсолютной влажностью подразумевают содержание воды (в граммах) в одном кубометре воздуха. Соответственно, единица измерения этой величины – г/м3. Состояние, при котором содержание воды в газе достигает максимальной величины (100%), называется порогом максимального насыщения или влагоемкостью. При достижении этого предела начинается процесс конденсации.

Необходимо заметить, что влагоемкость прямо пропорциональна температуре: чем она выше, тем большее количество воды может содержаться в том же объеме газа. Именно поэтому цифровой или аналоговый модуль измерения влажности практически всегда снабжен датчиком температуры.

Перейдем к определению, описывающему относительную влажность. Эта величина показывает соотношение влагоемкости и абсолютной влажности, соответствующие температурному режиму на момент измерения. Состояние, при котором эти величины сравняются, называется «точка росы».

Теперь, когда мы определились с терминологией, рассмотрим существующие типы датчиков и узнаем, по какому принципу работает каждый из них.

Виды датчиков и их принцип работы

Наибольшее распространение получили четыре типа приборов, каждый из них имеет свою специфику эксплуатации:



Рисунок 4. Датчик воды SYH-2RS

Поскольку детекторы данного типа чаще всего используются в любительских схемах, мы еще вернемся к рассмотрению их устройства.



Рисунок 6. Аспирационный измеритель влажности МВ-4М

Мы привели наиболее распространенные виды детекторов, на самом деле их значительно больше. Например, есть еще оптический датчик, где используется рассеивание света при образовании конденсата по достижению точки росы, термический (задействованы два терморезистора в открытой и герметичной камере), канальный и т.д.

Устройство детекторов резистивного типа

Теперь, как и обещали, рассмотрим конструктивные особенности сенсоров резистивного типа на примере модели SYH-2RS.


Рисунок 7. Устройство резистивного сенсора

1) – вид сбоку; 2) – вид сверху.

Обозначения:

  • а – керамическая подложка;
  • b – напыленные электроды;
  • c – гигроскопичное покрытие на основе оксида алюминия.

Как видите, конструкция сенсора довольно простая, этим и обуславливает низкая стоимость устройств данного типа. А если еще принять во внимание взаимозаменяемость таких элементов, то неудивительно, что в большинстве самодельных устройств для дома (например, датчик протечки воды) радиолюбители предпочитают использовать резистивные сенсоры.

Краткий обзор имеющихся на рынке устройств их применение

Рассмотрим приборы, которые могут быть полезны в быту, начнем с реле влажности воздуха HIG-2 (рис.8), служащего для управления вытяжкой в ванной.


Рисунок 8. Модуль HIG-2 с релейным выходом

Основные характеристики:

  • устройство запитывается от домашней электросети с напряжением 220 В;
  • срабатывание при относительной влажности от 60% до 90% (устанавливается);
  • допустимый ток нагрузки – не более 2 А;
  • время работы вентилятора после срабатывания задается таймером (2-20 мин.).

Как подключить датчик влажности HIG-2?

Для правильного подключения устройства достаточно придерживаться схемы, приведенной в инструкции к прибору, она показана на рисунке 9.


Рисунок 9. Схема подключения вентилятора к модулю контроля влажности

На клемнике прибора есть соответствующие обозначения, поэтому сложностей эта операция не вызовет. Если электропроводке квартиры или на самом вентиляторе не предусмотрено заземление, то его можно не подключать, так же не обязательно ставить на вход питания выключатель.

Тех, кого увлекает концепция «умного дома», наверняка заинтересует внешний сенсор Mi Smart (рис. 10). При установке на смартфон специального приложения можно получать информацию о температуре и влажности в квартире. Если задать в такой программе определенные параметры микроклимата, то она известит, если условия будут нарушены.


Рисунок 10. Беспроводной сенсор производства компании Xiaomi

Заметим, что у этого устройства довольно низкая погрешность измерений (для влажности она в пределах 3%, что касается температуры, то точность показаний порядка 0,3 С°). Существенный недостаток – нерусифицированное программное обеспечение, но данная проблема будет решена в ближайшее время.

Тем, кто хочет сделать для теплицы капельный полив с датчиком влажности, можно порекомендовать сенсор Gardena (рис. 11), который регулирует работу клапанов систем этого же производителя.


Рисунок 11. Сенсор Gardena, управляющий системой полива

Для питания устройства используются две алкалиновые батарейки, их заряда хватает на 10-12 месяцев непрерывной работы.

Теперь рассмотрим характеристики промышленной модели цифрового измерителя Ивит-М.Т (рис. 12), который может применяться в производственной сфере, сельском хозяйстве или ЖКХ.


Рисунок 12. Измеритель влажности с выносным датчиком из серии ИВИТ-М

Перечень основных характеристик:

  • для питания прибора необходимо напряжение 18-36 В;
  • относительная влажность может быть измерена в диапазоне от 5 % до 95 % (максимальная погрешность не более 4 %);
  • измерение температуры воздуха в пределах от -40 С° до 50 С° (модификации Н1, V) или от -40С° до 60°(модели Н2, К1, К2), точность 2 С°;
  • прибор может эксплуатироваться в температурном диапазоне от -40 С° до 50 С°.

Любителей поэкспериментировать наверняка заинтересуют сенсоры DHT11 и DHT22 (рис. 13), которые используются вместе с платформой Ардуино. В сети можно найти много интересных решений на этой элементной базе.


Рисунок 13. Сенсоры влажности для платформы Arduino

a) DHT22; b) DHT11.

Как видно из рисунка внешний вид этих датчиков практически идентичен, это же касается и распиновки. Технические характеристики сенсоров очень похожи, за исключением точности и диапазона измерений. Приведем эти данные.

Основные технические параметры DHT11:

  • подключение к источнику постоянного напряжения 3-5 В;
  • в процессе запроса пиковый уровень потребляемого тока не более 2,5 мА;
  • границы измеряемой влажности и температуры – 20-80 % и 0-50 С°, погрешность 5% и 2 С°;
  • частота выборки 1 Гц, то есть получать данные можно один раз в течение секунды.

Теперь сравним эти параметры с более точной моделью DHT22:

  • напряжение источника питания остается без изменений, как и потребляемы ток при передаче данных;
  • влажность измеряется во всем диапазоне 0-100 %, погрешность в пределах 2-5 %;
  • границы замеряемой температуры существенно расширены, по сравнению с предыдущей моделью, минимальная -40 С°, максимальная +125 С°.

Стоимость этих приборов вполне доступна на Алиэкспрессе их можно заказать с бесплатной доставкой по $1.28 (DHT11) и $4,9 (DHT22). Если покупать в России цена будет примерно в полтора-два раза дороже. Что касается базовой платформы, то плату Arduino Uno можно приобрести в Поднебесной за $25-$48 (стоимость зависит от комплектации). Программное обеспечение и прошивки скачиваются бесплатно.

Датчики температуры (термодатчики) для теплицы

В качестве преобразователей температуры в электрический сигнал используются различные термодатчики - терморезисторы, термотранзисторы и т. д. Сопротивление этих датчиков пропорционально (прямо или обратно) температуре окружающей среды.

Для самостоятельного изготовления термодатчиков можно использовать отрицательное свойство транзисторов - уход их параметров от температуры. В транзисторах ранних выпусков этот уход был настолько велик, что оставленный на солнце транзисторный радиоприемник начинал издавать искаженный звук, а через некоторое время или замолкал вообще, или просто хрипел.

Это происходило оттого, что нагревшись, транзисторы начинали пропускать существенно больший ток, рабочие точки транзисторов смещались и радиоприемник переставал работать.

Это свойство транзисторов с успехом можно использовать при изготовлении своими руками термодатчиков для теплицы и не только их. И чем больше уход параметров транзистора от температуры, тем более чувствительным получится датчик. Для термодатчиков подойдут транзисторы ранних выпусков - МП15А, МП16Б, МП20Б, МП41А, МП42Б, МП25А.Б. МП26А.Б, МП416Б, ГТ308Б, П423, П401-403.

При использовании их в качестве датчиков не требуется какой-либо доработки и преобразование температуры в электрический сигнал обеспечивается определенным включением транзистора в электронную схему. Чтобы получить представление о работе транзистора в качестве термодатчика, проведем небольшой эксперимент.

Соберем схему своими руками по рис. З.а (цоколевка большинства перечисленных транзисторов показана на рис. 3,б) и подключим к источнику питания. Если под рукой не окажется сетевого источника питания, можно использовать батарею «Крона» или две последовательно включенные батареи от карманного фонаря. Вольтметром будем контролировать напряжение на резисторе 5,1 кОм.

Отметим величину напряжения при подключении к схеме источника питания. Подогреем корпус транзистора паяльником не касаясь его - напряжение на резисторе начинает расти. Отведем паяльник в сторону - через некоторое время стрелка вольтметра вернется на прежнее место. Если постоянный резистор 5,1 кОм заменить на переменный, получим возможность изменять уровень напряжения на подвижном контакте при заданной температуре среды в теплице .

Но первый эксперимент показывает, что изменение напряжения на резисторе 5,1 кОм мало, а транзистор приходится сильно нагревать. Если увеличить это изменение напряжения при небольшом нагреве транзистора, то в принципе решается задача включения соответствующей нагрузки.

Увеличить это изменение напряжения можно, если собрать схему по рис. 4,а (на рис. 4,б показана цоколевка усилительного транзистора). Резистор 5,1 кОм заменим на 4,7 кОм, так как часть тока будет ответвляться в базу транзистора усилительного каскада.

Вращением движка потенциометра 4,7 кОм необходимо добиться максимального напряжения на колллекторе транзистора КТ315. Опять подогреем транзистор МП25Б - напряжение на коллекторе упадет почти до нуля и довольно быстро, причем при меньшем нагреве термодатчика. Уберем паяльник - напряжение так же быстро восстановится.

Из этих нехитрых экспериментов можно сделать следующие выводы.

  1. При нагреве транзистора МП25Б ток через него меняется - это регистрирует вольтметр в виде изменения напряжения на резисторе, включенном последовательно с транзистором МП25Б. Значит, этот транзистор может быть использован в качестве термодатчика при повышении температуры окружающей среды.
  2. Чтобы получить командный сигнал, т. е. большое изменение напряжения за короткий промежуток времени при малом нагреве (при малом изменении температуры окружающей среды), необходим усилитель, управляемый термодатчиком.

Из этих выводов следует, что на основе транзистора МП25Б, используемого в качестве термодатчика, и усилителя напряжения с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры внутри теплицы при ее повышении. Попросту говоря, такая схема в состоянии вовремя включить вентилятор и проветрить теплицу, оранжерею или замкнутый объем, где установлена гидропонная установка - застекленный балкон или лоджия.

А как быть, если температура среды понизится и нужно включать не вентилятор, а калорифер, чтобы поднять температуру?

Поменяем местами термодатчик и переменный резистор и включим последовательно с ним еще один на 36 кОм (рис. 5). С помощью движка потенциометра добьемся максимального напряжения на коллекторе транзистора KT315.

Нальем в чашку немного холодной воды, бросим кусочки колотого льда и опустим в воду термометр и транзистор МП25Б так, чтобы вода не касалась выводов транзистора. Через 1...2 мин корпус транзистора остынет и вольтметр покажет быстрый спад напряжения почти до нуля.

Достанем кусочки льда из чашки и дольем теплой воды до прежнего уровня. Через некоторое время температура воды и корпуса транзистора восстановится и вольтметр отметит быстрый рост напряжения до первоначального уровня. Схема вернулась в исходное положение.

Из этих опытов следует: при охлаждении транзистора МП25Б ток через него также меняется, но в обратную сторону и при перемене места подключения транзистора МП25Б в прежней схеме его можно использовать в качестве термодатчика при понижении температуры.

И здесь напрашивается основополагающий вывод: на основе транзистора МП25Б, используемого в качестве термодатчика и усилителя с большим коэффициентом усиления, можно создать электронный термометр для контроля и регулирования температуры в теплице при ее понижении. Эта схема вовремя включит калорифер или систему обогрева почвы.

Усилитель же с большим коэффициентом усиления необходим для включения нагрузок при малейшем изменении температуры (0,5...2 °С). Датчики воздушных термометров представляют собой собственно транзисторы указанных выше типов. Необходимо отметить, что чем выше статический коэффициент передачи тока транзистора (коэффициент усиления), тем чувствительнее датчик.

Датчик температуры почвы - такой же транзистор, помещенный в стеклянную пробирку и залитый эпоксидным клеем до середины выводов, к которым припаяны отводящие провода. Места паек и выводы необходимо закрыть отрезками виниловых трубочек, плотно надвинув их до упора в корпус транзистора. Провода пропускаются через резиновую шайбу (можно использовать резиновые клапаны от кранбукс), которая плотно вставляется в горло пробирки. Датчик готов.

Нередко в продаже можно встретить такие приспособления, которые устанавливаются на цветочный горшок и следят за уровнем влажности почвы, включая при необходимости насос и поливая растение. Благодаря такому устройству можно будет спокойно уезжать в отпуск на недельку, не боясь, что любимый фикус завянет. Однако цена на такие приспособления неоправданно высока, ведь их устройство предельно простое. Так зачем покупать, если можно сделать самому?

Схема

Предлагаю к сборке схему простого и проверенного датчика влажности почвы, схема которого изображена ниже:

В почку горшка опускаются два металлических прутка, сделать которые можно, например, разогнув скрепку. Их нужно воткнуть в землю на расстоянии примерно 2-3 сантиметра друг от друга. Когда почва сухая, она плохо проводит электрический ток, сопротивление между прутками очень велико. Когда почва влажная – её электропроводность значительно повышается и сопротивление между прутками уменьшается, именно это явление лежит в основе работы схемы.
Резистор 10 кОм и участок почвы между прутками образуют делитель напряжения, выход которого соединён с инвертирующим входом операционного усилителя. Т.е. напряжение на нём зависит лишь от того, насколько увлажнена почва. Если поместить датчик во влажную почву, то напряжение на входе ОУ будет равно примерно 2-3 вольтам. По мере высыхания земли это напряжение будет увеличиваться и достигнет значения 9-10 вольт при совершенно сухой земле (конкретные значения напряжения зависят от типа почвы). Напряжение на неинвертирующем входе ОУ задаётся вручную переменным резистором (10 кОм на схеме, его номинал можно менять в пределах 10-100 кОм) в пределах от 0 до 12-ти вольт. С помощью этого переменного резистора задаётся порог срабатывания датчика. Операционный усилитель в этой схеме работает в качестве компаратора, т.е. он сравнивает напряжения на инвертирующем и неинвертирующем входах. Как только напряжение с инвертирующего входа превысит напряжение с неинвертирующего, на выходе ОУ появится минус питания, загорится светодиод и откроется транзистор. Транзистор, в свою очередь, активирует реле, управляющее водяным насосом или электрическим клапаном. Вода начнёт поступать в горшок, земля вновь станет влажной, её электропроводность увеличиться, и схема отключит подачу воды.
Печатная плата, предлагающаяся к статье, рассчитана на использования сдвоенного операционного усилителя, например, TL072, RC4558, NE5532 или других аналогов, одна его половинка при этом не используется. Транзистор в схеме используется малой или средней мощности и структуры PNP, можно применить, например, КТ814. Его задача – включение и выключение реле, также вместо реле можно применить ключ на полевом транзисторе, как это сделал я. Напряжение питания схемы – 12 вольт.
Скачайте плату:

(cкачиваний: 330)

Сборка датчика влажности почвы

Может случиться такое, что при высыхании почвы реле включается не чётко, а сначала начинает быстро щёлкать, и только после этого устанавливается в открытом состоянии. Это говорит о том, что провода от платы до горшка с растением улавливают сетевые наводки, пагубно влияющие на работу схемы. В таком случае, не помешает заменить провода на экранированные и поставить электролитический конденсатор ёмкостью 4.7 – 10 мкФ параллельно участку почвы, вдобавок к ёмкости 100 нФ, указанной на схеме.
Работа схемы мне очень понравилась, рекомендую к повторению. Фото собранного мной устройства:

Одним из зимних вечеров гулял по просторам интернета в поисках схемы датчика влажности почвы, увидел эту схему и она мне приглянулась из за её простоты.

Немного её переделал и вот что получилось

Развел дорожки в " ", вытравил плату, впаял детали и подключил питание. Попробовал дотронуться до контактов Д1 Д2, реле щелкнуло, покрутив переменник убедился что чувствительность меняется. Вроде бы все и надо успокоиться, но я вспомнил, что когда то я разбирал видеомагнитофон и нашел там два как я тогда подумал сопротивления (я не ошибся). Откопав эти сопротивления в куче радиодеталей попробовал одно из них подключить и посмотреть что получится. Вращая переменник добился, чтобы схема реагировала на пар исходящий из рта. Дышишь на датчик и реле срабатывает, таким образом получился датчик влажности воздуха.

Схема очень простая с доступными деталями (кроме сопротивления влажности из видеомагнитофона) . Применить устройство можно для включения вентиляции в ванной комнате, открытия форточки в теплице или парнике а если заменить сопротивление двумя электродами то можно включать автоматически полив растений.

При сборке используются следующие детали:

Переменный резистор 100 кОм тип R3296; Конденсаторы 0,022 мкФ керамика или пленочный, 220 мкФ х 16В электролит, 470мкФ х 25В электролит; Сопротивление 10 кОм 0,125Вт; Транзистор КТ315 с любым буквенным индексом или любой его аналог например BC847 ; Диод 1N4007 или любой другой аналогичный диод; Стабилизатор напряжения LM7809 (9B) или любой другой аналогичный; Реле LEG-12 или любое другое на 12В и тем-же расположением выводов; Микросхема К176ЛА7 или К561ЛА7 или CD4011 или любой её аналог, разница между микросхемами в напряжении питания;

При использовании микросхем К561ЛА7 и CD4011 вместо LM7809 нужно установить перемычку и реле 12В.

Если будет использоваться микросхема К176ЛА7, то вместо перемычки (видно на фото перемычка красного цвета между электролитами) надо впаять стабилизатор по схеме, так как питание этой микросхемы максимум 9В. Так же надо вместо реле 12В установить реле на 9В.

Вот что получилось у меня

Настройка схемы производится вращением переменного сопротивления R1 100 кОм.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
DD1 Логическая ИС

К561ЛА7

1 CD4011 В блокнот
IC1 Линейный регулятор

LM7809

1 В блокнот
VT1 Биполярный транзистор

BC847

1 В блокнот
VD1 Выпрямительный диод

1N4007

1 В блокнот
C1 220мкФ 16В 1 К50-35 В блокнот
C2 Конденсатор 2.2 нФ 1 К15-5 керамический В блокнот
C3 Электролитический конденсатор 470мкФ 25В 1 К50-35 В блокнот
R1 Подстроечный резистор 100 кОм 1

Вода - это жизнь. Если она в кране, или в радиаторе отопления, это благо. А если она на полу вашей квартиры, или на потолке соседа снизу - это большие финансовые и моральные неприятности. Разумеется, необходимо регулярно проверять систему водоснабжения и отопления на предмет коррозии или трещин в пластиковых трубах. Однако прорыв воды обычно происходит внезапно, без признаков надвигающейся опасности. Хорошо, если в этот момент вы дома, и не спите. Но, по закону подлости, протечки возникают как раз в ночное время, или когда вас нет дома.

Простые правила борьбы с этой проблемой (особенно это касается старого жилого фонда, с изношенными сетями):

  • Регулярно осматривайте водопроводные трубы и элементы системы отопления на предмет дефектов, появления точечной ржавчины, герметичности соединений, и прочее.
  • Уходя из дому, перекрывайте входную задвижку на стояке.
  • Вне отопительного сезона закрывайте краны на батареях (если они имеются).
  • Используйте систему защиты от протечек.

Последний пункт списка мы рассмотрим подробнее.

Как сигнализировать об утечке воды

Решение вопроса пришло в быт из яхтенного мира. Поскольку судовые помещения нижнего яруса (особенно это касается трюмов) находятся ниже ватерлинии, в них регулярно скапливается вода. Последствия понятны, вопрос в том, как с этим бороться. Ставить для контроля отдельного вахтенного матроса нерационально. Тогда кто даст команду на включение откачной помпы?

Существуют эффективные тандемы: датчик наличия воды, и автоматическая помпа. Как только датчик обнаружит заполнение трюма, включается мотор помпы, и производится откачка.

Датчик воды - не что иное, как обычный поплавок на шарнире, соединенный с выключателем помпы. Когда уровень воды поднимается на 1–2 см, одновременно срабатывает сигнализация и мотор откачной помпы.

Удобно? Да. Безопасно? Разумеется. Однако такая система вряд ли подойдет для жилого дома.

  • Во-первых, если вода достигнет уровня 1–2 см по всей площади помещения, она через порог входной двери побежит на лестничную площадку (не говоря о соседях снизу).
  • Во-вторых, откачная помпа совершенно не нужна, поскольку необходимо немедленно найти и локализовать причину прорыва.
  • В-третьих, поплавковая система для помещений с плоским полом неэффективна (в отличие от плавсредств с килеватой формой днища). Пока наберется «нужный» для срабатывания уровень, от сырости развалится дом.

Стало быть, нужна более чувствительная система сигнализации от протечек. Это вопрос датчиков, а исполнительная часть бывает двух видов:

1. Только сигнализация. Она может быть световой, звуковой, или даже соединенной с GSM сетью. В этом случае вы получите сигнал на мобильный телефон, и сможете дистанционно вызвать аварийную бригаду.

2. Отключение подачи воды (к сожалению, такая конструкция не работает с системой отопления, только водопровод). После главной задвижки, которая подает воду от стояка в квартиру (не важно, до или после прибора учета), установлен электромагнитный клапан. При подаче сигнала от датчика, вода перекрывается, и дальнейший потоп останавливается.

Естественно, система отключения воды еще и сигнализирует о проблеме любым из вышеуказанных способов. Эти устройства в широком ассортименте предлагаются сантехническими магазинами. Казалось бы, материальный ущерб от потопа потенциально выше цены спокойствия. Однако большинство граждан живет по принципу «пока гром не грянет, мужик не перекрестится». А более прогрессивные (и рачительные) владельцы жилья, изготавливают датчик протечки воды своими руками.

Принцип работы датчиков протечек

Говоря о блок схеме - все очень просто. Некий элемент фиксирует жидкость в точке его размещения, и подает сигнал в исполнительный модуль. Который, в зависимости от настроек может подавать световые или звуковые сигналы, и (или) дать команду на перекрытие задвижки.

Как устроены датчики

Поплавковый механизм рассматривать не будем, поскольку в домашних условиях он не эффективен. Там все просто: основание закреплено на полу, на шарнире подвешен поплавок, который при всплытии замыкает контакты выключателя. Подобный принцип (только механический) применяется в бачке унитаза.

Чаще всего применяется контактный датчик, который использует естественную способность воды проводить электрический ток.

Разумеется, это не полноценный включатель, через который проходит напряжение 220 вольт. К двум контактным пластинам (см. иллюстрацию) подключается чувствительная схема, которая фиксирует даже небольшую силу тока. Датчик может быть отдельным (как на фотографии выше), или встроенным в общий корпус. Такое решение применяется на мобильных автономных датчиках, работающих от батарейки или аккумулятора.

Если у вас нет системы «умный дом», а вода подается без всяких электромагнитных клапанов, именно простейший датчик со звуковой сигнализацией можно использовать в качестве стартового варианта.

Самодельный датчик простейшей конструкции

Несмотря на примитивность, датчик достаточно эффективен. Домашних мастеров эта модель привлекает копеечной стоимостью радиодеталей, и возможностью сборки буквально «на коленке».

Базовый элемент (VT1) - NPN транзистор серии BC515 (517, 618 и им подобные). С его помощью подается питание на звуковой сигнализатор (B1). Это простейший готовый зуммер со встроенным генератором, который можно приобрести за копейки, или выпаять из какого-нибудь старого электроприбора. Питание требуется порядка 9 вольт (конкретно для этой схемы). Есть варианты под 3 или 12 вольтовые батарейки. В нашем случае используется элемент питания типа «Крона».

Как работает схема

Секрет в чувствительности перехода «коллектор-база». Как только через него начинает протекать минимальный ток, открывается эмиттер, и подается питание на звуковой элемент. Раздается писк. Параллельно можно подключить светодиод, добавляя визуальную сигнализацию.

Сигнал к открытию коллекторного перехода дает та самая вода, о наличии которой надо сигнализировать. Из металла, не подверженного коррозии, изготавливаются электроды. Это могут быть два кусочка медной проволоки, которую можно просто облудить. На схеме точки подключения: (Электроды).

Собрать такой датчик можно на макетной плате.

Затем прибор помещается в пластиковую коробочку (можно в мыльницу), в донышке которой проделаны отверстия. Желательно, чтобы при попадании воды, она не касалась монтажной платы. Если хочется эстетики, печатную плату можно вытравить.

Недостаток такого датчика - различная чувствительность к разным типам воды. Например, дистиллят от протекающего кондиционера может остаться незамеченным.

Исходя из концепции: недорогой автономный прибор, его нельзя интегрировать в единую систему защиты вашего дома, даже самодельную.

Более сложная схема, с регулятором чувствительности

Себестоимость такой схемы тоже минимальная. Выполняется на транзисторе КТ972А.

Принцип работы аналогичен предыдущему варианту, с одним отличием. Сформированный сигнал о наличии протечки (после открытия эмиттерного перехода транзистора), вместо сигнального устройства (светодиод или звуковой элемент), подается на обмотку реле. Подойдет любое слаботочное устройство, типа РЭС 60. Главное, чтобы напряжение питания схемы соответствовало характеристикам реле. А уже с его контактов, информацию можно подавать на исполнительное устройство: система «умный дом», сигнализация, GSM передатчик (на мобильный телефон), аварийный электромагнитный клапан.

Дополнительное преимущество такого исполнения - возможность настройки чувствительности. С помощью переменного резистора регулируется ток перехода «коллектор-база». Вы можете настроить порог срабатывания от появления росы или конденсата, до полноценного погружения датчика (контактной пластины) в воду.

Датчик протечки на микросхеме LM7555

Этот радиоэлемент является аналогом микросхемы LM555, только с меньшими параметрами потребления энергии. Информация о наличии влаги поступает с контактной площадки, обозначенной на иллюстрации, как «датчик»:

Для повышения порога срабатывания, ее лучше выполнить в виде отдельной пластины, соединенной с основной схемой проводами с минимальным сопротивлением.

Оптимальный вариант на фото:

Если вы не хотите тратить деньги на покупку подобного «концевика», его можно вытравить самостоятельно. Только обязательно покройте оловом контактные дорожки, для повышения коррозийной устойчивости.

Как только между дорожками появляется вода, пластина становится замкнутым проводником. Через встроенный в микросхему компаратор начинает протекать электрический ток. Напряжение быстро возрастает до порога срабатывания, при этом открывается транзистор (который выполняет роль ключа). Правая часть схемы - командно исполнительная. В зависимости от исполнения, происходит следующее:

  1. Верхняя схема. Срабатывает сигнал на так называемом «бузере» (пищалке), и светится опционально подключенный светодиод. Есть еще один вариант использования: несколько датчиков объединяются в единую параллельную схему с общим звуковым сигнализатором, а светодиоды остаются на каждом блоке. При срабатывании звукового сигнала, вы безошибочно определите (по аварийному свечению), какой именно блок сработал.
  2. Нижняя схема. Сигнал от датчика поступает на электромагнитный аварийный клапан, расположенный на стояке подачи воды. В этом случае, вода перекрывается автоматически, локализуя проблему. Если вас в момент аварии нет дома, потоп не случится, материальные потери будут минимальными.

Информация: Разумеется, можно своими руками изготовить и запорный клапан. Однако это сложное устройство лучше приобрести в готовом виде.

Схему можно выполнить по макету печатной платы, которая одинаково подойдет как для LM7555, так и для LM555. Устройство питается от напряжения 5 вольт.

Важно! Блок питания должен быть с гальванической развязкой от 220 вольт, чтобы опасное напряжение не попало в лужу воды при протечке.

На самом деле, идеальный вариант - использование зарядного устройства от старой мобилки.

Себестоимость подобной самоделки не превышает 50–100 рублей (на покупку деталей). При наличии в запасниках старой элементной базы, можно свести затраты к нулю.

Корпус - на ваше усмотрение. При таких компактных размерах, найти подходящую коробочку не составит труда. Главное, чтобы от общей платы до контактной пластины датчика, расстояние было не более 1 метра.

Общие принципы размещения датчиков протечки

Любой владелец помещения (жилого или офисного) знает, где проходят коммуникации водоснабжения или отопления. Потенциальных мест протечки не так много:

  • запорные краны, смесители;
  • соединительные муфты, тройники (особенно это касается пропиленовых труб, которые соединяются методом пайки);
  • вводные патрубки и фланцы бачка унитаза, стиральной или посудомоечной машины, гибкие шланги кухонных смесителей;
  • места подключения приборов учета (счетчиков воды);
  • радиаторы отопления (могут протекать как по всей поверхности, так и в местах соединения с магистралью).

Разумеется, в идеале, датчики должны быть расположены именно под этими устройствами. Но тогда их может быть слишком много, даже для варианта самостоятельного изготовления.

На самом деле, достаточно 1–2 датчиков на потенциально опасное помещение. Если это ванная комната, или туалет - как правило, имеется порожек входной двери. В этом случае, вода набирается, как в поддон, слой может достигать 1–2 см, пока жидкость не прольется через порог. В этом случае, место установки не критично, главное, чтобы датчик не мешал передвигаться по комнате.

На кухне датчики устанавливаются на пол под раковиной, за стиральной или посудомоечной машиной. Если возникнет протечка, она сначала образует лужицу, в которой и сработает сигнализация.

В остальных помещениях прибор устанавливается под радиаторами отопления, поскольку через спальню или гостиную трубы водоснабжения не прокладываются.

Не лишним будет установка датчика в нишу, по которой проходят стояки трубопроводов и канализации.

Наиболее критичные точки прорыва воды

При равномерном рабочем давлении, риск протечки минимален. Тоже самое относится к смесителям и кранам, если вы открываете (закрываете) воду плавно. Слабое место системы трубопроводов проявляет себя при гидроударах:

  • клапан подачи воды в стиральную машину при запирании создает давление, в 2–3 раза превышающее номинал водопровода;
  • то же самое, но в меньшей степени, относится к запирающей арматуре бачка унитаза;
  • радиаторы отопления (а также места их подключения к системе) зачастую не выдерживают тестовую опрессовку, которую проводят предприятия теплоснабжения.

Как правильно размещать датчики

Контактная пластина должна располагаться как можно ближе к поверхности пола, не касаясь его. Оптимальная дистанция: 2–3 мм. Если контакты разместить непосредственно на полу, будут возникать постоянные ложные срабатывания из-за конденсата. Большое расстояние снижает эффективность защиты. 20–30 миллиметров воды, это уже проблема. Чем раньше сработает датчик, тем меньше потери.

Справочная информация

Вне зависимости от того, приобретается система защиты от протечек в магазине, или изготавливается своими руками, надо знать единые стандарты ее работы.

Классификация устройств

  • По количеству вторичных защитных устройств на объекте (запорных аварийных кранов с электромагнитным приводом). Датчики протечки не должны перекрывать все водоснабжение, если запорные системы разнесены по потребителям. Локализуется только линия, на которой обнаружена протечка.
  • По способу подачи информации об аварии водопровода (системы отопления). Местная сигнализация предполагает нахождение людей на объекте. Дистанционно передаваемая информация организуется с учетом оперативного прибытия владельца или ремонтной группы. В противном случае, она бесполезна.
  • Способ оповещения: локальная звуковая или световая сигнализация (на каждом датчике), или вывод информации на единый пульт.
  • Защита от ложных срабатываний. Как правило, точно настраиваемые датчики работают эффективнее.
  • Механическая или электрическая защита. Пример механики - системы «Аква стоп» на подающих шлангах стиральных машин. Сигнализация на таких устройствах отсутствует, сфера применения ограничена. Самостоятельное изготовление невозможно.

Вывод

Затратив немного времени, и минимум средств, вы сможете обезопасить себя от серьезных финансовых проблем, связанных с потопом в квартире.

Видео по теме

mob_info