Мегаомметр. Виды и устройство. Работа и применение. Измерения мегаомметром Мегаомметр показывает бесконечность

Электрические сети характеризуются различными параметрами. Одним из важнейших параметров сетей является электрическая изоляция. Изоляция представляет собой какой-либо материал, препятствующий электрическому току протекать в ненужном направлении. Изоляцией может быть защитная оболочка проводов и кабелей. Такие приспособления, как изоляторы, не позволяют контактировать токопроводящим линиям с землёй. Все эти меры по изоляции токопроводящих частей направлены на то, чтобы не допустить короткого замыкания, возгорания или поражения человека электрическим током.

Мегаомметр

Изоляция, как и всякий другой материал, подвержена влиянию различных внешних факторов: погода, механический износ и другие. Для своевременного обнаружения дефекта изоляции существует прибор, так называемый мегаомметр. Он производить измерение сопротивления изоляции.

Принцип работы прибора

Для чего предназначен прибор, можно понять из его названия, которое образовано из трёх слов: «мега»- размерность числа 10 6 «ом» - единица сопротивления и «метр» - измерять. Для измерения электрического сопротивления в диапазоне мегаомов используется прибор мегаомметр. Принцип работы прибора основан на применении закона Ома, из которого следует, что сопротивление (R) равно напряжению (U), делённому на ток (I), протекающий через это сопротивление. Следовательно, для того чтобы реализовать этот закон в приборе, нужны:

  1. генератор постоянного тока;
  2. измерительная головка:
  3. клеммы для подключения измеряемого сопротивления;
  4. набор резисторов для работы измерительной головки в пределах рабочей области;
  5. переключатель, коммутирующий эти резисторы;

Реализация мегаомметра по такой схеме требует минимум элементов. Она проста и надёжна. Такие приборы исправно работают уже полвека. Напряжение в таких аппаратах выдаёт генератор постоянного тока, величина которого различна в разных моделях. Обычно оно равно 100, 250, 500, 700, 1000, 2500 вольт. В различных моделях приборов может применяться одно или несколько напряжений из этого ряда. Генераторы отличаются по мощности и соответственно по габаритам. В действие такие генераторы приводятся ручным способом. Для работы нужно покрутить ручку динамо-машины, которая вырабатывает постоянный ток.

В настоящее время на смену электромеханическим приборам приходят цифровые. В таких приборах в качестве источников постоянного тока используются либо гальванические элементы, либо аккумуляторы. А также есть новые модели со встроенным сетевым блоком питания.

Работа с мегаомметром

Работы на каком-либо оборудовании с этим прибором относятся к работам с повышенной опасностью вследствие того, что прибор вырабатывает высокое напряжение и есть вероятность получения электротравмы. Работы с этим прибором разрешается производить персоналу, изучившему инструкцию по работе с прибором, по правилам охраны труда и техники безопасности при работе в электроустановках. Работник должен иметь соответствующую группу допуска и периодически проходить проверки на знание правил работ в электроустановках, знать инструкции по охране труда, в том числе с использование мегаомметра.

Обычно этим прибором проводится измерение сопротивления изоляции кабельных линий, электропроводки и электродвигателей. Приборы должны проходить периодическую проверку в метрологической службе и иметь соответствующие документы. Запрещается проводить измерения не проверенным прибором, он должен быть изъят из эксплуатации и отправлен на проверку.

Перед началом работ с использование мегаомметра нужно убедиться в целостности прибора визуальным осмотром. На нём должен быть штамп поверки, не должно быть сколов на корпусе прибора, стекло индикатора должно быть целым. Проверяются измерительные щупы на предмет повреждения изоляции. Нужно провести тестирование прибора. Для этого необходимо, если используется стрелочный прибор, установить его на горизонтальную поверхность, чтобы избежать погрешности в измерениях и провести измерения с разведёнными и замкнутыми щупами.

На старых моделях мегаомметров измерения проводят посредством вращения рукоятки генератора с постоянной частотой 120–140 оборотов в минуту. На других моделях измерения производят нажатием соответствующей кнопки на приборе. Мегаомметр должен показывать бесконечность и ноль мегаом соответственно. После этого можно приступать к работам по измерению сопротивления изоляции.

Измерения прибором

Оформление этого вида работ на разных предприятиях отличается. В каких-то организациях эти работы выполняются по наряду-допуску, в каких-то по распоряжению или в порядке текущей эксплуатации. Важно, что общие правила выполнения одинаковы. Возьмём для примера технологию измерения сопротивления изоляции кабелей связи на железнодорожном транспорте. Выполнив все необходимые организационно-технические мероприятия (оформление работы, вывешивание плакатов и так далее), приступаем непосредственно к измерениям.

Выбрав пару, на которой нужно произвести измерения, первоначально нужно проверить на ней отсутствие напряжения. С помощью приготовленных ранее заземлителей снимаем заряд с измеряемых жил кабеля и заземляем их. Установив измерительные щупы и сняв заземлители, проводим измерение сопротивления изоляции мегаомметром. Зафиксировав полученные результаты, переключаем измерительный щуп на другую жилу и повторяем процедуру измерения.

Нужно помнить, что после проведения измерений в кабеле остаётся электрический заряд. После окончания измерений с помощью заземлителя необходимо снять электрический заряд. Нужно разрядить и сам мегаомметр. Это делается кратковременным замыканием измерительных шнуров между собой. Работы по установке измерительных щупов и заземлителей проводятся в диэлектрических перчатках.

Измеренная величина сопротивления изоляции заносится в протокол. В протоколе обычно указывается, каким прибором проводилось измерение, величина подаваемого напряжения и измеренное сопротивление изоляции. Величина сопротивления различна для разных видов испытаний. Она сравнивается с допустимой величиной и делается вывод о состоянии изоляции электроустановки.

Для производства работ по измерению сопротивления изоляции нужно руководствоваться следующими данными:

  1. электроприборы и аппараты напряжением до 50 вольт испытываются напряжением мегаомметра 100 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм. При проведении измерений полупроводниковые приборы, находящиеся в составе аппарата, должны быть зашунтированы для предотвращения выхода их из строя;
  2. электроприборы и аппараты напряжением от 50 до 100 вольт испытываются напряжением мегаомметра 250 вольт. Результаты аналогичны п.1;
  3. электроприборы и аппараты напряжением от 100 до 380 вольт испытываются напряжением мегаомметра 500–1000 вольт. Результаты аналогичны п.1;
  4. электроприборы и аппараты напряжением от 380 до 1000 вольт испытываются напряжением мегаомметра 1000–2500 вольт. Результаты аналогичны п.1;
  5. щиты распределительные , распределительные устройства (РУ), токопроводы испытываются напряжением мегаомметра 1000–2500 вольт, величина измеренного сопротивления должна быть не менее 1 МОм, при этом измерять нужно каждую секцию РУ;
  6. осветительная электропроводка испытывается напряжением мегаомметра 1000 вольт, величина измеренного сопротивления должна быть не менее 0,5 МОм.

Периодичность проведения измерений устанавливается на предприятиях. Владельцы электроустановок принимают решения о дальнейших действиях на электроустановке в зависимости от результатов измерений.

Работа по измерению сопротивления изоляции - одна из важнейших работ в электроустановках, которая помогает следить за состоянием электрооборудования и кабельного хозяйства и вовремя принимать меры для безаварийной эксплуатации электрохозяйства.

Содержание:

Измерение электрического сопротивления может выполняться разными приборами. Среди них довольно часто применяется мегаомметр, название которого состоит из трех частей. «Мега» означает миллион или 10 6 , «ом» - соответствует сопротивлению, а частица «метр» эквивалентна слову «измерять». Таким образом, диапазоном измерений этого прибора служат мегаомы. Начинающим электрикам рекомендуется, прежде чем пользоваться мегаомметром, изучить принцип работы, устройство и технические характеристики данного измерительного прибора.

Принцип действия мегаомметра

Работа мегаомметра основана , отображаемого в виде формулы I=U/R. Для измерения необходимы элементы, расположенные в корпусе устройства. Прежде всего, это источник напряжения с постоянной, откалиброванной величиной. Кроме того, мегаомметр дополняется измерителем тока и выходными клеммами.

В разных моделях конструкция источника напряжения может существенно изменяться. В старых мегаомметрах установлены простые ручные динамо-машины, а в новых применяются внешние или встроенные источники. Значение выходной мощности генератора и его напряжения могут изменяться в различных диапазонах или оставаться в фиксированном виде. К клеммам мегаомметра подключены соединительные провода, скоммутированные в измеряемую цепь. Надежный контакт обеспечивается зажимами - «крокодилами».

Включенный в электрическую схему, измеряет величину тока, проходящего по цепи. Благодаря точному значению напряжения, шкала на измерительной головке размечена сразу в нужных единицах сопротивления. Это могут быть мегаомы или килоомы. Некоторые приборы оборудованы шкалой, показывающей оба значения. Новые модели мегаомметров, использующие цифровые сигналы, отображают полученные данные на дисплее.

Устройство мегаомметра

Типовой мегаомметр состоит из генератора постоянного тока, измерительной головки, тумблера-переключателя и токоограничивающих резисторов. Работа измерительной головки основана на взаимодействии рабочей и противодействующей рамок. Тумблер может выставляться на определенные пределы измерения. Он осуществляет коммутацию различных резисторных цепочек, изменяющих выходное напряжение и режим работы головки.

Все элементы заключены в прочный, герметичный диэлектрический корпус, оборудованный ручкой для более удобной переноски. Здесь же располагается портативная складывающаяся генераторная рукоятка. Чтобы начать вырабатывать напряжение, она раскладывается и вращается. На корпусе имеется рычаг управления тумблером и выходные клеммы, в количестве трех, к которым подключаются соединительные провода. Каждый выход имеет собственное обозначение: «З» - земля, «Л» - линия и «Э» - экран.

Клеммы «З» и «Л» применяются во всех случаях, когда требуется измерить сопротивление изоляции по отношению к контуру заземления. Вывод «Э» необходим для устранения воздействия токов утечки при измерение между кабельными жилами, расположенными параллельно или похожими токоведущими частями. Клемма «Э» работает совместно со специальным измерительным проводом, имеющим экранированные концы. Обычно она подключается к кожуху или экрану. С помощью этой клеммы производятся наиболее точные измерения. В некоторых моделях клеммы «Л» и «З» обозначаются соответствующей маркировкой «rx» и «-».

Принцип работы мегаомметров, использующих внутренние или внешние источники питания генератора, такой же, как и у конструкций с ручкой. Для того чтобы выдать напряжение на проверяемую схему, необходимо нажать кнопку и удерживать ее в этом состоянии. Существуют приборы, способные выдавать различные комбинации напряжения путем сочетания нескольких кнопок.

Современные мегаомметры отличаются более сложным внутренним устройством. Напряжение, выдаваемое генераторами разных конструкций, составляет примерный ряд величин: 100, 250, 500, 700, 1000 и 2500 В. Одни мегаомметры могут работать лишь в одном диапазоне, а другие - сразу в нескольких.

Значение выходной мощности мегаомметра, способны проверять изоляцию на высоковольтном промышленном оборудовании, во много раз выше, чем этот же параметр у моделей мегаомметров, способных проверять лишь бытовую проводку. Их размеры также заметно различаются между собой.

Опасность повышенного напряжения устройства

В работе с мегаомметром существуют специфические особенности, на которые следует обращать пристальное внимание. В первую очередь это связано с повышенным напряжением прибора. Встроенный генератор обладает выходной мощностью, достаточной не только для проверки изоляции, но и для получения серьезной электротравмы. Поэтому, в соответствии с правилами электробезопасности, использовать мегаомметр могут только подготовленные и обученные специалисты, не менее чем с 3-й группой допуска.

В процессе замеров повышенное напряжение охватывает проверяемый участок, а также клеммы и соединительные провода. Защита от этого обеспечивается щупами, имеющими усиленную изолированную поверхность. Они предназначены для установки на измерительные провода. Концы щупов ограничены запретной зоной с помощью предохранительных колец. Таким образом, предупреждается касание к ним открытых частей тела.

Для выполнения измерения на измерительных щупах предусмотрена специальная рабочая зона, за которую можно смело браться руками. Непосредственное подключение к схеме осуществляется зажимами «крокодил» с хорошей изоляцией. Запрещается использование других типов проводов и щупов. При выполнении измерительных работ, людей не должно быть на всем проверяемом участке. Данный вопрос особенно актуален в тех случаях, когда сопротивление изоляции измеряется в длинномерных кабелях, протяженностью до нескольких километров.

Влияние наведенного напряжения

Электрическая энергия, проходящая по проводам ЛЭП, создает значительное магнитное поле. Оно изменяется в соответствии с синусоидальным законом и способствует наведению в металлических проводниках вторичной электродвижущей силы и тока I2. В случае большой протяженности кабеля, наведенное напряжение достигает значительной величины.

Данный фактор оказывает существенное влияние на точность проводимых измерений. Дело в том, что в этом случае неизвестна величина и направление электрического тока, протекающего через измерительный прибор. Данный ток появляется под влиянием наведенного напряжения и его значение добавляется к собственным показаниям мегаомметра, полученным через калиброванное напряжение генератора. В итоге образуется сумма двух неизвестных токовых величин, и данная метрологическая задача становится неразрешимой. Поэтому измерение сопротивления изоляции сетей при наличии любого напряжения является совершенно бессмысленным занятием.

Пристальное внимание к наведенному напряжению объясняется реальной возможностью электрического травматизма. Поэтому все работники должны строго соблюдать установленные правила безопасности.

Действие остаточного напряжения

При выдаче генератором мегаомметра напряжения, поступающего в измеряемую сеть, между проводом и контуром заземления возникает . Это приводит к образованию емкости, наделенной определенным зарядом.

После того как измерительный провод отключается, цепь мегаомметра становится разорванной. За счет этого потенциал частично сохраняется, поскольку в проводе или шине создается емкостной заряд. В случае касания этого участка, человек может получить электротравму от разряда тока, проходящего через тело. Для того чтобы избежать подобных неприятностей, следует . Его рукоятка должна быть заизолирована, что дает возможность безопасно снимать емкостное напряжение.

Перед тем как подключать мегаомметр для замеров изоляции, необходимо чтобы в проверяемой схеме отсутствовал остаточный заряд или напряжение. Для этого существуют специальные индикаторы или вольтметр с соответствующим номиналом. С помощью мегаомметра можно выполнять самые разные замеры. Например, изоляция в десятижильном кабеле вначале проверяется относительно земли, а затем измеряется каждая жила. Качество изоляции определяется по очереди между всеми жилами. Во время каждого измерения следует использовать переносное заземление.

Чтобы обеспечить быструю и безопасную работу, заземляющий проводник изначально одним концом соединяется с . В таком положении он остается до конца работ. Другим концом проводник контактирует с изоляционной штангой. Именно при ее непосредственном участии накладывается заземление, чтобы снять остаточный заряд.

Безопасная эксплуатация мегаомметра

Любые измерения следует производить только исправным мегаомметром. Устройство должно быть испытанным в лаборатории, где проверяется его собственная изоляция и все комплектующие части. Для испытаний применяется повышенное напряжение, после чего мегаомметру выдается разрешение на работу в течение определенного, ограниченного срока.

С целью поверки мегаомметр направляется в метрологическую лабораторию, где специалисты определяют его класс точности. Прохождение контрольных замеров подтверждается клеймом, наносимым на корпус прибора. В процессе дальнейшей эксплуатации должна соблюдаться сохранность и целостность клейма, особенно даты и номера специалиста, проводившего поверку. В противном случае устройство автоматически попадет в категорию неисправных.

Правильная область применения также гарантирует безопасность при работе с мегаомметром. Перед каждым замером определяется величина выходного напряжения. В первую очередь устройство применяется для испытаний изоляции. С этой целью для проверяемого участка создаются экстремальные условия, когда производится подача не номинального, а завышенного напряжения. Временной период также довольно продолжительный. Это способствует своевременному выявлению возможных дефектов и недопущение их в последующей эксплуатации.

Каждая схема, подлежащая проверке, имеет свои особенности, влияющие на безопасную работу мегаомметра. Поэтому перед подачей на нужный участок высокого напряжения, нужно исключить все неисправности и поломки составляющих элементов. Современное оборудование буквально насыщено полупроводниками, конденсаторами, измерительными и микропроцессорными приборами. Они не рассчитаны на высокое напряжение, создаваемое генератором мегаомметра. Перед проверкой все подобные устройства шунтируются или вовсе извлекаются из схемы. По окончании замеров схема восстанавливается и приводится в рабочее состояние.

Сопротивление изоляции: как правильно измерить

Перед измерением сопротивления нужно внимательно изучить схему электроустановки, подготовить средства защиты и сам прибор в исправном состоянии. Проверяемый участок должен быть заранее выведен из работы.

Проверка исправности мегаомметра происходит следующим образом. Выводы измерительных проводов закорачиваются между собой. После этого к ним от генератора подается напряжение. В случае исправности прибора результаты измерений закороченной цепи равны нулю. Далее концы проводов разъединяются, отводятся в стороны, после чего делается повторный замер. В норме на шкале отображается символ бесконечности, показывающий сопротивление изоляции в воздушном промежутке между измерительными концами.

Непосредственное измерение сопротивления изоляции выполняется в строго определенной последовательности. Прежде всего, переносное заземление нужно подсоединить к контуру. Напряжение на проверяемом участке должно отсутствовать. Далее собирается схема измерения прибора, а переносное заземление снимается.

На схему подается калиброванное напряжение до того момента, пока не выровняется емкостный заряд. Далее фиксируется отсчет, после чего напряжение снимается. Чтобы снять остаточный заряд, накладывается переносное заземление. По окончании замеров соединительный провод отключается от схемы, а заземление снимается.

Для замера сопротивления изоляции мегаомметром используется наибольший предел МΩ. Если данной величины недостаточно, необходимо воспользоваться более точным диапазоном. Все дальнейшие цепочки измерений должны выполняться в такой же последовательности. Некоторые конструкции мегаомметров могут работать в прерывистом режиме. В этом случае на протяжении одной минуты выдается напряжение, после чего в течение двух минут выдерживается пауза.

При наличии в измерительных приборах стрелочного индикатора, для всех замеров используется горизонтальная ориентация корпуса. Нарушение этого требования приводит к дополнительным погрешностям. Современные цифровые мегаомметры могут работать в любом положении.

Несмотря на то, что мегаомметр считается профессиональным измерительным прибором, в некоторых случаях он может быть востребован и в быту. Например, когда необходимо проверить состояние электрической проводки. для этой цели не позволит получить необходимые данные, максимум, он способен — зафиксировать проблему, но не определить ее масштаб. Именно поэтому измерение сопротивления изоляции мегаомметром остается наиболее эффективным способ испытаний, подробно об этом рассказано в нашей статье.

Устройство и принцип работы мегаомметра

Старение изоляции электропроводки, как и любой электрической цепи, невозможно определить мультиметром. Собственно, даже при номинальном напряжении 0,4 кВ на силовом кабеле, ток утечки через микротрещины в изоляционном слое будет не настолько большой, чтобы его можно было зафиксировать штатными средствами. Не говоря уже про измерения сопротивления неповрежденной изоляции жил кабеля.

В таких случаях применяют специальные приборы – мегаомметры, измеряющие сопротивления изоляции между обмотками двигателя, жилами кабеля, и т.д. Принцип работы заключается в том, что на объект подается определенный уровень напряжения и измеряется номинальный ток. На основании этих двух величин производится расчет сопротивления согласно (I = U/R и R=U/I).

Характерно, что в мегаомметрах для тестирования используется постоянный ток. Это связано с емкостным сопротивлением измеряемых объектов, которое будет пропускать переменный ток и тем самым вносить неточности в измерения.

Конструктивно модели мегаомметров принято разделять на два вида:

Рассмотрим их особенности.

Электромеханический мегаомметр

Рассмотрим упрощенную электрическую схему мегаомметра и его основные элементы


Обозначения:

  1. Ручной генератор постоянного тока, в качестве такового используется динамо-машина. Как правило, для получения заданного напряжения скорость вращения рукояти ручного генератора должна бить около двух оборотов в течение секунды.
  2. Аналоговый амперметр.
  3. Шкала амперметра, отградуированная под показания сопротивления, измеряемого в килоомах (кОм) и мегаомах (МОм). В основу калибровки положен закон Ома.
  4. Сопротивления.
  5. Переключатель измерений кОм/Мом.
  6. Зажимы (выходные клеммы) для подключения измерительных проводов. Где «З» – земля, «Л» – линия, «Э» – экран. Последний используется, когда необходимо проверить сопротивление относительно экрана кабеля.

Основное преимущество такой конструкции заключается в его автономности, благодаря использованию динамо-машины прибор не нуждается во внутреннем или внешнем источнике питания. К сожалению, у такого конструктивного исполнения имеется много слабых мест, а именно:

  • Чтобы отобразить точные данные для аналоговых приборов важно минимизировать фактор механического воздействия, то есть мегаомметр должен оставаться неподвижным. А этого трудно добиться, вращая ручку генератора.
  • На отображаемые данные влияет равномерность вращения динамо-машины.
  • Часто в процессе измерения приходится задействовать усилия двух человек. Причем один из них выполняет сугубо физическую работу, — вращает ручку генератора.
  • Основной недостаток аналоговой шкалы – ее нелинейность, что также негативно отражается на погрешности измерений.

Заметим, что в более поздних аналоговых мегаомметрах производители отказались от использования динамо-машины, заменив ее возможностью работы от встроенного или внешнего источника питания. Это позволило избавиться от характерных недостатков, помимо этого у таких устройств существенно увеличились функциональные возможности, в частности, расширился диапазон калибровки напряжения.


Что касается принципа работы, то он в аналоговых моделях остался неизменным и заключается в особой градации шкалы.

Электронный мегаомметр

Основное отличие цифровых мегаомметров заключается в применении современной микропроцессорной базы, что позволяет существенно расширить функциональность приборов. Для получения измерений достаточно задать исходные параметры, после чего выбрать режим диагностики. Результат будет выведен на информационное табло. Поскольку микропроцессор производит расчеты исходя из оперативных данных, то класс точности таких устройств существенно выше, чем у аналоговых мегаомметрах.

Отдельно следует упомянуть о компактности цифровых мегомметров и их многофункциональности, например, проверка устройств защитного отключения, замеры сопротивления заземления, петель фаза/ноль и т.д. Благодаря этому при помощи одного устройства можно провести комплексные испытания и все необходимые измерения.

Как правильно пользоваться мегаомметром?

Для проведения испытаний важно правильно выставить диапазоны измерений и уровень тестового напряжения. Проще всего это сделать, воспользовавшись специальными таблицами, где указываются параметры для различных тестируемых объектов. Пример такой таблицы приведен ниже.

Таблица 1. Соответствие уровня напряжения допустимому значению сопротивления изоляции.

Испытуемый объект Уровень напряжения (В) Минимальное сопротивление изоляции (МОм)
Проверка электропроводки 1000,0 0,5>
Бытовая электроплита 1000,0 1,0>
РУ, Электрические щиты, линии электропередач 1000,0-2500,0 1,0>
Электрооборудование с питанием до 50,0 вольт 100,0
Электрооборудование с номинальным напряжением до 100,0 вольт 250,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Электрооборудование с питанием до 380,0 вольт 500,0-1000,0 0,5 или более в зависимости от параметров, указанных техническом паспорте
Оборудование до 1000,0 В 2500,0 0,5 или более в зависимости от параметров, указанных техническом паспорте

Перейдем к методике измерений.

Пошаговая инструкция измерения сопротивления изоляции мегаомметром

Несмотря на то, что пользоваться мегаомметром несложно, при испытаниях электроустановок необходимо придерживаться правил и определенного алгоритма действий. Для поиска дефектов изоляции генерируется высокий уровень напряжения, которое может представлять опасность для жизни человека. Требования ТБ при проведении испытаний будут рассмотрены отдельно, а пока речь пойдет о подготовительном этапе.

Подготовка к испытаниям

Перед началом тестирования электрической цепи, необходимо обесточить ее и снять подключенную нагрузку. Например, при проверке изоляции домашней проводки в квартирном щитке необходимо отключить все АВ, УЗО и диффавтоматы. Штепсельные соединения следует разомкнуть, то есть отключить электроприборы от розеток. Если проводится испытания линий освещения, то из всех осветительных приборов следует удалить источники света (лампы).

Следующее действие подготовительного этапа – . С его помощью убираются остаточные заряды в тестируемой цепи. Организовать переносное заземление несложно, для этого нам понадобиться многожильный проводник (обязательно медный), сечение которого не менее 2,0 мм 2 . Оба конца провода освобождаются от изоляции, потом один из них подключают на шину заземления электрощитка, а второй крепится к изоляционной штанге, за неимением последней можно использовать сухую деревянную палку.

Медный провод должен быть прикреплен к палке таким образом, что бы им можно было прикоснуться к токоведущим линиям измеряемой цепи.

Подключение прибора к испытуемой линии

Аналоговые и цифровые мегаомметры комплектуются 3-мя щупами, два обычные, подключаемые к гнездам «З» и «Л», и один с двумя наконечниками, для контакта «Э». Он применяется при испытании экранированных кабельных линий, которые в быту, практически, не используются.

Для тестирования однофазной бытовой проводки производим подключение одинарных щупов к соответствующим гнездам («земля» и «линия»). В зависимости от режима испытания зажимы-крокодилы присоединяем к тестируемым проводам:


Если показатели отвечают норме, то на этом можно закончить испытания, в противном случае тестирование продолжается.

  • Каждый из проводов проверяется относительно земли.
  • Осуществляется проверка каждого провода относительно других жил.

Алгоритм испытаний

Рассмотрев все основные этапы можно перейти, непосредственно, к порядку действий:

  1. Подготовительный этап (полностью описан выше).
  2. Установка переносного заземления для снятия электрического заряда.
  3. На мегаомметре задается уровень напряжения, для бытовой проводки – 1000,0 вольт.
  4. В зависимости от ожидаемого результата выбирается диапазон измерения сопротивления.
  5. Проверка обесточенности тестируемого объекта, сделать это можно при помощи индикатора напряжения или мультиметра.
  6. Производится подключение специальных щупов-крокодилов измерительных проводов к линии.
  7. Отключение переносного заземления с тестируемого объекта.
  8. Осуществляется подача высокого напряжения. В электронных мегаомметрах для этого достаточно нажать кнопку «Тест», если используется аналоговый прибор, следует вращать ручку динамо-машинки с заданной скоростью.
  9. Считываем показания прибора. При необходимости данные заносятся в протокол измерений.
  10. Снимаем остаточное напряжение при помощи переносного заземления.
  11. Производим отключение измерительных щупов.

Чтобы измерить состояние других токоведущих проводников, описанная выше процедура повторяется, пока не будут проверены все элементы объекта, то есть речь идет об окончании замеров при испытании электрооборудования.

По итогам испытаний принимается решение о возможности эксплуатации электроустановки.

Правила безопасности при работе с мегаомметром

При испытаниях электрооборудования к работе с мегаомметром должен допускаться электротехнический персонал, у которого не ниже третьей. Даже если измерения производятся в быту, тем, кто намерен использовать мегаомметр следует ознакомиться с основными требованиями ТБ:

  • При тестировании следует , к сожалению, данное требование часто игнорируется, что приводит к частым травмам.
  • Перед проведением испытаний, необходимо убрать посторонних лиц с тестируемого объекта, а также вывесить соответствующие предупреждающие плакаты.
  • При подключении щупов необходимо касаться их изолированных участков (рукоятей).
  • После каждого из измерений, следует не забывать подключать переносное заземление, прежде чем отключать контрольные кабели.
  • Измерения должны проводиться только при сухой изоляции, если ее влажность превышает допустимые пределы, испытания переносятся.

Подборка видео по теме

Мегаомметр – это прибор для измерения сопротивления изоляции, который подает постоянное напряжение величиной 100, 250, 500, 1000, 2500, 5000В. Это универсальный переносной прибор, предназначенный также для испытаний повышенным напряжением. Мегаомметром испытывают обмотки электродвигателей, силовые кабельные линии, обмотки турбогенераторов и прочее электрооборудование. В общем, везде где есть изоляция, применяют мегаомметр. Данные приборы бывают ручные, цифровые, аналоговые, электронные, механические, высоковольтные.

Сопротивление изоляции, физика процесса

Наиболее часто встречающимся видом измерения в моей практике является измерение сопротивление изоляции. Данный вид измерения можно производить на кабеле (до и после ), обмотке , электродвигателе, трансформаторе, даже в релейной защите мегерить цепи приходится постоянно. В общем, на любом электрооборудовании, которое имеет изоляцию, необходимо следить за её величиной и выявлять возможные несоответствия для предотвращения возможных неблагоприятных для оборудования последствий.

Поговорим о физической модели сопротивления изоляции. Более подробно о классах и видах изоляции будет написано в отдельной статье. Уточним же, что факторами, портящими изоляцию являются токи, протекающие в оборудовании и сверхтоки (пусковые, токи кз). В этом материале я остановлюсь на схеме замещения изоляции. Это будет схема, состоящая из двух активных сопротивлений и двух емкостей. Значит, что мы имеем:

  • С1 - геометрическая емкость
  • С2- абсорбционная емкость
  • R1 – сопротивление изоляции
  • R2 – сопротивление, потери в котором вызываются абсорбционными токами

Зачем Вам это знать? Ну, я не знаю, возможно, покрасоваться перед не знающими эти основы людьми. Или же, чтобы понять характер прохождения постоянного тока через изоляцию.

Первая цепь состоит из емкости С1. Эта емкость называется геометрической, она характеризуется геометрическими характеристиками изоляции, её расположения относительно земли. Эта емкость разряжается мгновенно, при заземлении изоляции после испытания. Та самая бдыщ, искра при поднесении заземления к испытуемой фазе после опыта.

Вторая цепь имеет в своем составе два элемента – емкость С2 и активное сопротивление R2. Эта цепь имитирует потери при подаче на изоляцию переменного напряжения. R2 характеризует строение и качество изоляции. Чем более изоляция потрепана, тем меньшая величина R2. Емкость С2 называется абсорбционной емкостью. Эта емкость заряжается, при подаче постоянного напряжения, не мгновенно, а за время пропорциональное произведению R2 на С2. Чем лучше диэлектрические свойства изоляции, тем дольше будет заряжаться емкость С2, потому что величина R2 будет больше у здоровой изоляции. В общем, эта емкость отвечает на вопрос, почему после искры надо держать заземление еще пару минут на испытуемой жиле. Она разряжается медленно и заряжается не мгновенно.

Третья ветка состоит из активного сопротивления R3, которое характеризует ток утечки изоляции и потери. Ток возрастает при увлажнении изоляции, пропорционален площади изоляции и обратно пропорционален толщине изоляции. Вот такая электрическая модель изоляции.

История развития мегаомметра

Поговорим про историю развития мегаомметров. Откуда взялось такое название? Вероятно из-за названия измеряемой величины. Кстати, также мегаомметр называют мегер, или говорят промегерить цепь. Знакомо? Оказывается, и возможно, вы это знали, это название происходит от названия древнейшей фирмы по производству измерительного оборудования под названием «Megger». Эта компания появилась еще в 19 веке, а первые тестеры выпускали еще в 1951 году.

Первые мегаомметры, тогда еще мегомметры, были с ручками. Ты крутишь ручку, вырабатывается постоянное напряжение, и ты производишь испытания. Крутить надо было с частотой 120 об/мин. Однако, долго крутить могли не все. Ведь измерения необходимо производить одну минуту, для определения коэффициента абсорбции. Поэтому наука шагнула вперед, и появились аналогичные мегаомметры, но с питанием от сети и кнопкой подачи напряжения. Держать кнопку куда удобнее, чем крутить ручку. Однако тут встает неудобство в том плане, что необходимо найти .

Однако и на этом прогресс не остановился, и появились электронные мегаомметры. Они уже с подсветкой, не обязательно держать кнопку подачи напряжения на протяжении всего испытания, однако, при испытании кабеля, остаточная емкость может спалить прибор (ну я не проверял, но так говорят некоторые инженера).

Как правильно мегаомметр, мегометр, мегомметр, мегаометр или еще как?)

Внимание, говорю правду. Подробнее об этом писал вот , но повторюсь еще раз. Правильно прибор для измерения мегаОмов называется мегаомметр. Ранее он назывался мегомметр (например, в книге 1966 года он так и именуется). Новые времена, новые правила. Правильно называть его мегаомметр, так давайте же и будем использовать это название в своей электротехнической жизни. И если мегомметр - это название устаревшее, то прочие интерпретации являются просто неправильными и неграмотными. Хотя можно, например, старые приборы с ручкой, выпущенные в советском союзе называть мегомметры, а новые цифровые, например электронные типа Sonel именовать мегаомметрами. Но это моё личное мнение, скорее даже шутка, чем мнение.

Основные типы и марки приборов мегаомметров из моей практики (устройство и принцип работы)

Начнем с простеньких. Итак, первые участники сегодняшнего парада – украинские приборы и ЭСО 210/3Г. Буква «Г» говорит о том, что прибор работает от внутреннего генератора и имеет ручку. Модель без ручки работает от сети 220В и от кнопки. Они невелики по размеру и удобны в пользовании. Это верные помощники энергетиков. Ими удобно мегерить любое электрооборудование. А еще можно взять после испытания один из концов и разземлять им, ибо концы с обеих сторон имеют металлические наконечники. В моделях с ручкой в качестве источника напряжения выступает генератор переменного тока, в моделях с кнопкой - трансформатор, преобразующий переменное напряжение в постоянное.

Значит, пройдемся по настройкам прибора. Прибором можно испытывать, подавая постоянное напряжение величиной 500, 1000 или 2500 Вольт. Показания появляются на стрелочной шкале, которая имеет несколько пределов, которые переключаются выключателем. Это шкала «I», «II» и «IIx10».

Шкала «I» - нижние цифры верхней шкалы. Отсчет идет справа налево. Значения от 0 до 50 МОм.

Шкала «II» - верхние цифры верхней шкалы. Отсчет идет слева направо. Значения от 50МОм до 10 ГОм.

Шкала «IIx10» - аналогична шкале «II», однако, значения от 500МОм до 100 ГОм.

В приборе также имеется нижняя шкала от 0 до 600 В. Эта шкала имеется в приборе ЭСО-210/3 и при не нажатом положении кнопки подачи напряжения показывает напряжение на концах. В общем, поднесли концы мегаомметра к розетке, и стрелка поднялась до 220В. Но только правильно подключить их надо на измерение напряжения, а не сопротивления изоляции. Один на молнию, а второй на Ux.

При подаче напряжения загорается красная лампочка на шкале, что сигнализирует о наличии напряжения на концах прибора.

Как подсоединить щупы прибора? У нас имеется три отверстия для присоединения щупов – экран, высокое напряжение и третий измерительный (rx, u). Вообще два щупа спарены и один из них подписан. Ошибиться внимательному человеку непросто.

Шагнем далее и остановим свой взор на мощном польском приборе под названием Sonel – мегаомметр mic-2510. Этот мегаомметр является цифровым. Внешне он очень симпатичный, в комплект входит сумка, в которую складываются щупы типа крокодилы (достаточно мощные и надежные) и втычные. Кроме того, в комплект входит зарядное устройство. Сам же прибор работает на батарейке, что достаточно удобно. Не требуется подключение к сети и не требуется вращение ручки, как у старых моделей отечественных мегаомметров. Также имеется лента, для удобного расположения на шее. Вначале это казалось мне не очень удобно, но в итоге к этому привыкаешь и осознаешь все достоинства. Кроме надежной батарейки к плюсам можно отнести возможность подачи напряжения без поддержания кнопки. Для этого вначале нажимаешь старт, потом "энтер" и всё – следи за показаниями и не подпускай никого под напряжение.

Этим прибором можно измерять следующие величины двухпроводным способом и трехпроводным. Трехпроводный способ используется для измерений, где необходимо исключить влияние поверхностных токов – трансформаторы, кабели с экраном.

Также прибором можно измерять температуру с помощью термодатчиков, напряжение до 600 вольт, низкоомное сопротивление контактов.

Шкала прибора имеет значения 100, 250, 500, 1000, 2500 Вольт. Это достаточно широкий диапазон, который может удовлетворить нужды инженеров при проведении самых различных испытаний. От коэффициента абсорбции, до коэффициента поляризации. Максимально измеряемое сопротивление изоляции, которое способен измерить прибор составляет 2000 ГОм - впечатляющая величина.

Коэффициент поляризации характеризует степень старения изоляции. Чем он меньше, тем более изоляция изношена. Коэффициент поляризации на 2500В и замеряем сопротивление изоляции через 60 и 600с или через 1 и 10минут. Если он больше двух, то всё хорошо, если от 1 до 2 – то изоляция сомнительна, если же коэффициент поляризации меньше 1 – время бить тревогу. Западные шеф-инженеры не приветствуют высоковольтные испытания, тем же АИДом, а рады провести мегер-тест на 5кВ или 2,5кВ с измерением данного коэффициента.

Коэффициент абсорбции это отношения сопротивления изоляции через 60 и 15 секунд. Этот коэффициент характеризует увлажненность изоляции. Если он стремится к единице, то необходимо поднимать вопрос о сушке изоляции. Более подробно о его величине для разного типа оборудования описано в нормах испытания электрооборудования вашей страны.

В процессе работы я встречался и с другими приборами, но именно эти два показывают, как далеко шагнул прогресс в процессе производства мегаомметров. У каждого из увиденных мною приборов есть свои плюсы и минусы.

Как пользоваться мегаомметром

Как же производятся измерения сопротивления изоляции (самое популярное измерение, которое выполняют мегаомметром) у различного электрооборудования. Рассмотрим, как испытывать, на примере энергосистемы РБ. Хотя, нормы в принципе одни и те же, за минимальными различиями.

Замер сопротивления изоляции мегаомметром, прозвонка с помощью мегаомметра

Перед началом измерения необходимо проверить, что прибор рабочий, для этого необходимо произвести подачу напряжения при закороченных концах и замкнутых. При замкнутых мы должны получить «0», а в разомкнутом состоянии должны иметь бесконечность (так как мы меряем сопротивление изоляции воздуха). Далее сажаем один конец на землю (заземляющий болт, шина, заземленный корпус оборудования), а второй на испытываемую фазу, обмотку. Два человека производят испытания, один держит концы, а второй подает напряжение. Записывается показание через 15 секунд и через 60. По окончании заземляется жила, на которую подавалось напряжение и через минуту-другую (в зависимости от величины и времени подачи напряжения) снимаются концы и измерения производятся на другой жиле по аналогичной схеме.

Как же прозвонить что угодно с помощью мегаомметра, прозвонка это проверка на целостность цепи. Прозвонка – это первый прибор электрика, который он должен собрать сам из лампочки, батарейки и проводков. Как же прозвонить с помощью мегаомметра? Мегаомметр не совсем прозванивает, он показывает, что отсутствует связь между фазой и землей, то есть отсутствие замыкания обмотки на землю. Однако если подать большое напряжение, то вполне можно спалить обмотку реле или двигателя.

Замер сопротивления изоляции электродвигателей мегаомметром

Значит, подходим мы к электродвигателю, например это 380-вольтовый мотор какого-нибудь насоса. Снимаем крышку, отсоединяем питающий кабель. Далее подаем 500В и смотрим. Если в конце минуты сопротивление меньше 1МОм, значит, не соответствует нормам. Коэффициент абсорбции не нормируется для маленьких электродвигателей. Напряжение подается между одной фазой и землей. Две другие фазы соединяются с корпусом. По окончании испытания производится заземление испытанной жилы.

Замер сопротивления изоляции кабелей мегаомметром

Значит, имеем кабель. С одной стороны он, например, подключен к пускателю, а с другой стороны к электродвигателю или приводу, который пускает электродвигатель. Нам необходимо промегерить этот кабель. Мы отключаем его от пускателя и от электродвигателя. Ставим человека у электродвигателя, если он в другом помещении, чтобы не подпускал никого к открытым жилам, которые мы будем испытывать. Далее подаем напряжение между жилой и землей 2500 В в течение минуты. Величина сопротивления изоляции для кабелей напряжением до 1000В должна составлять не ниже 0,5 МОм. Для кабелей напряжением выше 1кВ величина сопротивления изоляции не нормируется. Если мегаомметр показывает ноль, значит, жила пробита и надо искать повреждение. Также измеряется сопротивление изоляции между жилами. Или объединяют три жилы и на землю и если величина неадекватная, то необходимо уже измерять каждую жилу на землю по отдельности.

Также в конце испытаний необходимо до снятия провода, по которому подавалось напряжение, повесить заземляющий провод на него. Чем больше напряжение подавалось, тем дольше необходимо ждать. Для высоковольтных кабелей это время достигает нескольких минут.

Безопасность при работе мегаомметром

Так как мегаомметр подает высокое напряжение, то он является потенциальным источником опасности как для тех, кто это напряжение подает, так и для тех, кто находится рядом с оборудованием, кабелем, на который это напряжение подается.

О чем же необходимо помнить, при работе с мегаомметром? Во-первых, необходимо правильно подсоединять концы к прибору, во-вторых надо надежно закреплять концы, по которым подается напряжение к электрооборудованию. Также не стоит забывать про заземление испытываемого оборудования, как до измерения, так и по окончании для снятия остаточного заряда.

Фокусы с мегаомметром

Про фокусы с мегаомметром могу только отметить, что есть у нас один работник, которого мы мегерили на 500 вольт, тут, как он говорит главное держать концы плотно и не отпускать. Внимание!!! Не советую вам это повторять!!! . Зрелище было стремное конечно. А теоретически ток небольшой и термическое воздействие не напрягает.

В общем, желаю вам удачи в вашей работе с мегаомметром, и будьте внимательны, ведь наша профессия не только очень интересная, но и достаточно опасная. ТБ превыше всего!!!

Последние статьи

Самое популярное

Как говорится “по многочисленным просьбам…” записал сегодня на видео пример измерения мегаомметром сопротивления изоляции токоведущих частей.

Мегаомметр- электромеханический, то есть с “крутилкой”, надо вращать ручку как на шарманке))

Лично мне такой больше по душе чем электронный, с тем у меня как то не сложились отношения…

На видео рассказываю как устроен мегаомметр, основные технические характеристики и правила применения- что куда подключать. как крутить и т.д.

Получилась своеобразная краткая инструкция по мегаомметру в видеоформате.

С видео опять у меня не очень… Когда уже начал просматривать- оказалось что стрелочный указатель совсем не видно. Эх, что ж делать, фотоаппарат у меня не справляется с поставленой задачей)))

В статье на фото все прекрасно видно- можно посмотреть.

У кого нет возможности смотреть видео- читайте статью.

Для чего предназначен мегаомметр? Для измерения сопротивления изоляции токоведущих частей. На выходе мегометра при вращении рукоятки появляется высокое напряжение и если изоляция плохая- ее начинает “прошивать”.

И чем хуже изоляция тем сильнее ее пробивает повышенным напряжением мегаомметра- тем ниже ее сопротивление.

Токоведущие части- это провода, шины и т.п. которые в нормальном режиме находятся под напряжением и по ним протекает электрический ток.

А вот как раз для того, что бы этот режим работы был нормальным, а не аварийным нам и надо иметь хорошую изоляцию токоведущих частей относительно земли, корпусов оборудования и всего того где не должно быть опасного потенциала.

Вообще в энергетике самый главный приоритет- это жизнь и здоровье человека. Железяку можно отремонтировать, заменить, а жизнь человека бесценна.

Электричество же представляет реальную угрозу здоровью, поэтому от него отделяются, отгораживаются- изолируются всеми возможными средствами.

В проводах это всевозможный нетокопроводящий материал, на подстанциях с высоким напряжением и громоздким оборудованием- соответствующий воздушный зазор, фарфоровая изоляция ну и т.д.

А вот что бы знать в каком состоянии у нас находится изоляция- и предназначен мегаомметр.

Все прекрасно знают и постоянно передают в новостях- сколько происходит пожаров от неисправной электропроводки- вот последствия нарушенной изоляции.

Параметры изоляции регламентируются в ПУЭ- правилах устройства электроустановок и измеряются естественно в Омах.

А так как сопротивление изоляции очень высокое и значения получаются иногда с девятью нулями то используют приставку МЕГА, то есть шесть нулей сокращается и значение например 9000000000 превращается в 9 тыс.МОм.

Это было небольшое вступление, а сейчас про мегаомметр.

Предназначен уже сказал для чего, технические характеристики кратко:

режим работы прерывистый, 1 мин. максимум можно измерять, 2 мин. перерыв и т.д.

режимы измерения повышенным напряжением 500, 1000, и 2500 Вольт

измерительная шкала- верхняя и нижняя.

По верхней измеряется очень высокое сопротивление от 50 до 10 тыс.МОм

По нижней- от 0 до 50 МОм

Скорость вращения рукоятки- 120-140 оборотов в минуту.

Рабочее положение- горизонтальное, при любом другом стрелочный индикатор будет давать погрешность измерения- немножко врать.

На корпусе имеется клемная колодка куда подключаются измерительные провода с щупами. Всего- три клеммы.

Клемма с буквой “Э” обозначает экран. Сюда подключается специальный третий провод из комплекта, идущего с мегаомметром.

Второй конец этого провода фиксируется на кожухе или экране. Это используется при измерении сопротивления изоляции между двумя токоведущими частями для устранения токов утечки, возникающих при этих измерениях.

Если же меряется изоляция относительно корпуса оборудования или “земли”- то подключать клемму “Э” не надо!

На одном из измерительных проводов на конце- две клеммы, одна- маркированная буквой “Э” подключается на на соответствующую клемму “Э” мегаомметра, вторая- на среднюю клемму.

Второй измерительный провод подключается на клемму со знаком минус.

Если экран не нужен- эту клемму провода просто не подключаем.

Как работать мегаомметром?

Для начала надо убедиться что токоведущие части где будем измерять отключены- проверяем отключенные автоматы, рубильники и т.п.

Затем заземляем токоведущие части и снимаем заземление только после подключения мегаомметра.

Измерительные щупы мегаомметра брать только за изолирующие рукоятки (при напряжении выше 1000Вольт кроме этого еще используют диэлектрические перчатки)

Когда измеряем- нельзя касаться токоведущих частей!

Делаем измерение изоляции и по окончании- снимаем заряд с токоведущих частей прикасаясь к ним кратковременно проводом заземления.

Снимаем заряд и с самого мегаомметра- прикасаемся измерительными щупами друг к другу.

Не забываем снять заземление с токоведущих частей! Иначе будет конкретное КЗ!

Основу вроде всю написал, если у вас есть что добавить- пишите в комментарии.

Узнайте первым о новых материалах сайта!

mob_info