Сетевой блок питания шуруповерта. Импульсный блок питания для шуруповерта Блок питания для шуруповерта 14в схема

Аккумуляторный шуруповёрт это несомненно полезный инструмент, главным плюсом которого является мобильность. Но когда полностью или частично умирают родные аккумуляторы, покупка новых выливается в кругленькую сумму, сопоставимой половине стоимости нового инструмента. Многие просто покупают новый шуруповёрт, я же предлагаю за счёт потери мобильности сделать для него надёжный источник питания, который навсегда уберёт проблему постоянной зарядки полудохлых аккумуляторов.

Давайте разберём все за и против такой модернизации

Начнём пожалуй с минусов . Самая большая и единственная проблема — это привязка проводами шуруповёрта к розетке, которая с лихвой перекрывается нижеперечисленными плюсами:

  • Шуруповёрт всегда готов к работе, проблема незаряженных аккумуляторов (или не вовремя разрядившихся) отпадает.
  • Прекрасно чувствует себя в среде низких и отрицательных температур, в отличие от аккумулятора.
  • Если родные аккумуляторы сдохли, а покупать новые душит жаба, то блок питания полностью заменяет аккумуляторы.

Если вас устраивают такие условия, то начнём!

Блок питания можно сделать импульсным или трансформаторным. Почему я остановился именно на трансформаторном варианте, будет понятно по ходу прочтения статьи. Если ваш шуруповёрт работает от 12 или 14 вольт, то советую остановится именно на импульсном блоке питания от компьютера. Такой вариант требует минимум переделки и затрат.

Пациент №1

Причина модернизации: Аккумуляторы быстро садятся, даже тогда, когда они были новыми.

Цель модернизации: Получить гибрид, работающий от аккумуляторов и от сети.

Для питания нужен ток, порядка 10А. Тут встаёт вопрос применения компьютерного блока питания, но вот незадача — шуруповёрт работает от 18в. При подаче на него 12в крутит очень вяло и можно затормозить рукой почти не прилагая никаких усилий. Хотя некоторые утверждают, что шурупорвёрт нормально крутит и от 12 вольт, но теперь так сказать, миф проверен и разрушен.

Остаётся 2 варианта — переделывать ШИМ управление импульсного блока, чтобы он выдал нужное напряжение, либо использовать трансформатор с нужным напряжением.

Ещё одним минусом импульсного блока питания является то, что он рассчитан для работы при комнатной температуре, и не известно, как он поведёт себя при более низкой. Трансформатору в принципе практически всё равно в каких условиях его эксплуатируют. Хотя это всё предположения, не проверенные на практике.

Мощный трансформатор на 18 вольт довольно сложно найти, а для меня стало невозможно. Вот на этом моменте я хотел вернутся к варианту с компьютерным блоком питания, но вдруг, как говорят мастера 7 рязряда в руки случайно попал тороидальный трансформатор с намотанной первичной обмоткой. Осталось только намотать вторичку, у меня получилось около 90 витков проводом 1.5.

Если вы решились перемотать трансформатор на другое напряжение , то вам поможет программа Power Trans.

Блок питания выполнен в корпусе от AT блока. Роль выпрямителя играют 10 амперные диоды шоттки, включенные по мостовой схеме. 220 поступает на родной разъём блока, 18в выходит с разъёма, предназначенного для подключения монитора. Тумблер является выключаетем питания, а светодиод сигнализирует о наличии 18в.

Для удобства в работе и переноске блок оснащён складной ручкой:

Так как мне нужен гибрид, пришлось вывести отдельную линию питания для подключения блока:

При этом не стоит забывать отсоединять аккумуляторы при работе от блока.

Воспользовавшись случаем, при разборке шуруповёрта добавил подсветку рабочей зоны:

В итоге получился такой мутант:

Пациент №2

Причина модернизации: Умер родной аккумулятор, восстановление не оправдано.

Цель модернизации: Заменить аккумулятор блоком питания.

Вот тут мне попался агрегат на 12 вольт, и я подключил его к компьютерному блоку питания. Но не нут то было — блок стал уходить в защиту. Подключил его к более мощному БП, картина не изменилась. Причиной тому явилась короткозамкнутая обмотка двигателя. Щётки у двигателя оказались довольно большими, и я решил сделать трансформаторный блок питания, в нём защиты нет. В любом случае двигатель какое-то время поработает, а потом его можно будет заменить (прекрасно подходят от других шуруповёртов и от автомобильных помп).

Вот тут мне пригодился трансформатор от ИБП, удачно пролежавший у меня под столом пол десятка лет в ожидании своего звёздного часа. Как раз под искомые 12в.

Всё собрано по тому же принципу, только вместо диодов шоттки использовал 3 диодные сборки шоттки, добытые из компьютерных БП.

В предыдущем блоке я использовал целый шнур для подключения монитора, но так делать не стоит. Сечение родного шнура мало, и вызывает нагрев и потери. Правильнее использовать только разъём. К нему я подпаял двухжильный ПВС 2,5 квадрата:

Сильно длинный низковольтный шнур лучше не использовать, будут потери. Лучше сделать длиннее сетевой шнур.

Вынул из корпуса аккумулятора банки и подключил питание:

Машинка готова

Чтобы самостоятельно сделать блок питания для вашего инструмента, нужно обладать определенными навыками и умениями в области электрики. Если ваш уровень знаний в этой сфере находится на начальном уровне, во избежание потери времени и получения травм электрическим током, лучшим решением будет заказать в магазине новый блок или отнести вышедший из строя в ремонтную мастерскую.

Блок питания для шуруповерта

Все современные шуруповерты работают от аккумулятора. Чтобы он всегда оставался в заряженном состоянии, требуется блок питания. Зарядные устройства разных производителей могут существенно различаться. Во-первых, блоки комплектуются разными элементами, а во-вторых, их вольтаж бывает 12, 14 или 18 вольт.

В зарядных устройствах на 12 В используются транзисторы емкостью до 4,4 пФ, проводимость при этом находится на уровне 9 мк. Для нивелирования показателей тактовой частоты используются конденсоры. В зарядниках, использующих такое напряжение, чаще всего устанавливаются полевые резисторы.

Схема блока питания 12 В

В блоках на 14 В уже применены 5 транзисторов и импульсные конденсаторы. Используется микросхема преобразования тока четырехканального типа. Емкость резистора не превышает 6,3 пФ.

Схема зарядного устройства 14 В

В зарядниках 18 В используются только транзисторы переходного типа. Для нормализации максимальной частоты установлен сеточный триггер. Проводимость тока находится в районе 5,4 мк. На микросхеме находятся 3 конденсатора. Вместе с диодным мостом располагается тетрод. В некоторых моделях используются хроматические резисторы. Иногда применяются дипольные транзисторы.
Схема зарядного устройства 18 В

Блок питания для шуруповерта своими руками

Стандартное зарядное устройство использует трехканальную микросхему. На ней, в зависимости от вольтажа, размещается различное количество транзисторов, например, в заряднике на 12 вольт ставится 4 транзистора.
Чтобы снижать негативные воздействия тактовой частоты, в блоках устанавливаются конденсаторы. Они бывают импульсного или переходного типа. Чтобы минимизировать последствия от перегрузок электрической сети, в зарядных устройствах применяются тиристоры.

Стандартная схема зарядки шуруповерта

Блок питания для шуруповерта из энергосберегающей лампы
Для того чтобы сделать ИБП из энергосберегающей лампы, необходимо содержащийся в каждой лампе электронный дроссель немного изменить, поставив перемычку, и после подключить к импульсному трансформатору и выпрямителю.
Для источников питания небольшой мощности (от 3.7 в до 20 ватт), можно обойтись без трансформатора. Для этого необходимо просто добавить несколько витков полупроводника на магнитопровод располагающегося в балласте лампы дросселя, если там будет место для этого. Обмотку можно делать прямо поверх заводской. Для этого лучше использовать провод с изоляцией из фторопласта.

Блок питания для шуруповерта из зарядного устройства

Один из самых дешевых способов сделать блок питания – это использовать обычное зарядное устройство для смартфона. В каждом доме сейчас их два или более, а если у вас нет лишнего, можно приобрести за 50–100 рублей.

Так выглядят внутренности зарядки от смартфона

Переделка зарядки производится в следующей последовательности:

С помощью эмалированного проводника маленького диаметра нужно добавить один виток обмотки. После этого включаем зарядку и подключаем к аккумулятору шуруповерта. Посредством осциллографа замеряем амплитуду импульсов и определяем напряжение, создаваемое одним витком дополнительной обмотки.
Выпаиваем разъем USB, снимаем тестовый виток и доматываем нужное количество витков до получения необходимого напряжения. Новая обмотка припаивается к заводской последовательно.
Меняем штатный конденсатор и стабилитрон на новые, соответствующие требуемому напряжению.

Импульсный блок питания для шуруповерта своими руками

Для импульсного блока подбирается подходящая микросхема, и сборка осуществляется в следующей последовательности:

Диодные мосты и термистор ставятся на входе.
Устанавливаются два конденсатора.
Для синхронизации работы затворов полевых транзисторов применяются драйвера.
При установке транзисторов фланцы не закорачивают. С помощью изоляционных шайб и прокладок они крепятся к радиатору.
На выходе устанавливаются диоды.

Блок питания для шуруповерта из электронного трансформатора

Чтобы приспособить трансформатор под зарядное устройство вашего инструмента, его нужно доработать. Для этого нужно подключить конденсатор на выходе выпрямительного моста. Емкость определяется следующим образом – 1 мкФ на 1 Вт. Напряжение конденсатора должно быть не меньше 400 В. В разрыв одного сетевого кабеля нужно установить терморезистор, чтобы ограничить пусковой ток.
Диодный мост устанавливается для выпрямления напряжения частотой 30 кГц. Для нормального функционирования устройства требуется обеспечить плавный пуск. С этим отлично справляется дроссель Л1.

Выпрямитель для шуруповерта своими руками

Выпрямитель необходим для преобразования переменного тока в постоянный. Он функционирует за счет полупроводниковых диодов, которые играют роль преобразователей. Чтобы проанализировать работу устройства, применяют осциллограф.
Главным в изготовлении выпрямителя является правильный выбор диодов. Для использования в блоке питания подойдут элементы с показателями обратного тока до 10 ампер. Количество диодов равно 4, и их следует устанавливать по мостовому типу. Если применять схему на одном полупроводнике, полезное действие блока снижается вдвое.

Трансформаторный блок для питания шуруповерта

Трансформаторными источниками питания называются такие приборы, в которых располагается понижающий входное напряжение трансформатор. Помимо него, в таких блоках установлен диодный выпрямитель и конденсатор фильтра.
Конденсатор сглаживает пульсации выходного напряжения. По сути, трансформатор выдает напряжение того же вида, что и в сети 220 вольт, а точнее, синусоидальной. При работе от бесперебойных источников его форма может быть совсем несинусоидальной. Форма выпрямленного напряжения непостоянна во времени, поэтому необходима установка элемента, поддерживающего выходное напряжение постоянной величины, что выполняется на сглаживающем конденсаторе.

Плюсы трансформаторных блоков:

Простота и надежность.
Составные элементы легко найти в продаже.
Отсутствие частей, создающих радиоволновые помехи.

Сетевой блок для питания шуруповерта

Для того чтобы своими руками запитать шуруповерт от бытовой электросети, вам потребуются вышедший из строя аккумулятор, зарядное устройство от него, многожильный провод, изолента, припой, паяльник и кислота.
В первую очередь нужно припаять к контактам зарядника электропровод со штепсельной вилкой. Поскольку в блоке используются латунные клеммы, а в проводе медные жилы, чтобы их спаять, следует использовать в качестве соединителя кислоту. От качества этого соединения напрямую зависит функционирование всего устройства.
На втором этапе работа ведется с вышедшим из строя аккумулятором инструмента. Следует разобрать батарею и удалить из нее внутренние части. При этой операции нужно пользоваться средствами личной защиты, а внутреннее наполнение рекомендуется не выбрасывать в бытовой мусор, а утилизировать в безопасном для людей месте.
На заключительном этапе необходимо провода зарядного устройства спаять с выводами аккумулятора, которые располагаются во внутренней части корпуса.

При самодельном изготовлении блока питания для шуруповерта необходимо тщательно соблюдать технику безопасности при работе с электричеством. Перед началом работы нужно тщательно взвесить все за и против (сколько на это потребуется времени, какова будет стоимость материалов и запчастей), иногда будет проще и дешевле отнести зарядник в специализированную мастерскую или приобрести новый блок.

Шуруповерты с автономным питанием от аккумуляторной батареи с напряжением 12В – очень востребованный инструмент на производственных линиях и на бытовом уровне. Его достоинством считается непривязанность к розеточной сети, работы по сверлению и креплению саморезов проводить очень удобно. Как недостаток можно отметить большую стоимость аккумуляторных батарей и относительно небольшой срок их службы – от 3-5 лет, при интенсивной работе может быть еще меньше. Поэтому многие задумываются, как сделать блок питания для шуруповерта своими руками. При покупке и замене батарей финансовые затраты могут быть от 50 до 80% от первоначальной стоимости нового шуруповерта. Учитывая свои финансовые возможности и потребности, многие потребители ищут более экономичный способ для продолжения эксплуатации старых шуруповертов. Один из таких способов – переделать его схему питания для розеточной сети с напряжением 220В.

Как переделать аккумуляторный шуруповет в сетевой

Рассмотрим два наиболее доступных способа, как переделать шуруповерт с питанием 12В постоянного тока своими руками быстро и с минимальными финансовыми затратами:

  • Использовать родное зарядное устройство шуруповерта;
  • Использовать блок питания для шуруповерта от системного блока ПК.

Есть и другие способы переделки, но они требуют больше практических навыков и знаний в электротехнике, эти доступны даже дилетантам.

Использование зарядного устройства для шуруповерта

Это самый простой и не требующий финансовых затрат способ, если не считать затрат на электроэнергию и припой при пайке контактов.

Последовательность действий:

  • Откручиваются винты крепления корпуса зарядного устройства, снимается верхняя крышка;
  • К выходным контактам зарядного устройства припаиваются токопроводящие жилы шнура питания. Провода должны быть гибкие, многожильные, сечением не менее 2.5-4 мм2, чтобы выдержать токовые нагрузки в процессе эксплуатации, длина шнура – 3-4 м;

  • Можно припаять провода к выходящим клеммам зарядного устройства, к которым подключаются контакты аккумуляторного блока при установке его на зарядку. Этот способ имеет определенные сложности – клеммы сделаны из латунного сплава, и медные провода обычным припоем к ним не припаиваются;
  • Требуется зачистить место пайки надфилем или наждачной бумагой до появления металла желтоватого цвета;
  • Хорошо прогреть клемму, паяльником на 40-60 Вт, смазать специальной пастой (в магазинах радиодеталей продаются припои для пайки цветных металлов), тогда оловянный припой надежно сцепится с латунью;

  • После того, как места пайки будут готовы, к ним можно припаять медные луженые концы проводов, с красной изоляцией на +, с синей или черной – на минус;

Всей этой процедуры можно избежать, если выпаять из платы клеммы и на их место к плате припаять провода. Вывести шнур питания с выхода зарядного устройства можно через отверстия в корпусе, где размещались контакты для зарядки, или проделать дополнительное отверстие, соизмеримое с диаметром шнура питания.

Некоторых смущает третий контакт на выходе зарядного устройства, использовать надо только два: «+12В» и «-12В». Полярности контактов указываются на корпусе или на плате, для надежности можно включить зарядное устройство в розетку и мультиметром проверить наличие на выходе напряжения 12 В постоянного тока и полярность контактов. Оставшийся контакт – для датчика автоматического управления, отключения и подключения зарядки, при достижении полного уровня зарядки аккумулятора датчик отключает зарядное устройство. В нашем случае эта функция не нужна, клемму можно оставить или откусить от платы. Если вы собираетесь данное зарядное устройство еще использовать по прямому назначению, то снимать клеммы не надо, провода припаивайте с нижней стороны платы к токопроводящим дорожкам.

  • После припаивания проводов шнур выводится наружу, и корпус зарядного устройства закрывается. Противоположный конец шнура зачищается, медные проводники лудятся припоем.

Следующий этап работы – это подготовка входных контактов питания на самом шуруповерте:

  • Снимаем аккумуляторный контейнер с ручки шуруповерта;
  • Открываем его и извлекаем гальванические банки аккумулятора;

  • В корпусе аккумуляторного контейнера просверливаем отверстие для шнура питания;
  • Концы провода, приходящего с выхода зарядного устройства, припаиваем к контактам в аккумуляторном контейнере с внутренней стороны, соблюдая полярности;
  • Клеммы на контейнере тоже из латунного сплава, поэтому при необходимости зачищайте и используйте припой для пайки латуни;
  • Закрепите провод внутри контейнера к стенке корпуса, чтобы он не отрывался при натяжке. Это можно сделать гибкой пластиной из пластика, двумя винтами прикрутив ее к корпусу внутри отсека. Под пластиной проложить шнур питания, таким образом он будет надежно прижат с внутренней стороны;

Важно! Не используйте для крепления провода в зарядном устройстве и на шуруповерте металлические пластины в качестве хомутов или используйте между проводом и пластиной диэлектрическую прокладку (пластиковую, резиновую, картонную или другого изоляционного материала). В противном случае металлическая пластина может передавить шнур и прорезать изоляционный слой, что приведет к короткому замыканию.

  • Аккумуляторный контейнер закрывается и устанавливается в ручку шуруповерта;
  • Зарядное устройство включается в розетку, если все сделано правильно шуруповерт будет функционировать.

Надо отметить, что если полярности перепутаны, катастрофы не свершится, патрон шуруповерта будет вращаться против часовой стрелки, в сторону выкручивания. Но на каждом изделии есть реверсный переключатель, поэтому, чтобы не перепаивать контакты, достаточно переключить вращение в другую сторону. Соблюдать полярности рекомендуют для того, чтобы не вводить в заблуждение пользователей, и вращение осуществлялось в ту сторону, в которую показывают стрелки возле переключателя.

Использование блока питания от системного блока ПК

Такой способ применяют в том случае, если нет родного зарядного устройства шуруповерта, или оно неисправно и восстановлению не подлежит.

Рассматривается импульсный блок питания LC 300-ATX P4, на выходе которого три вида напряжения постоянного тока: +3.3В; +5В и +12В. 12 вольтовая линия выдерживает нагрузки до 15А, это мощность до 180Вт. Это не меньше, чем выдают аккумуляторные батареи, но, как показывает практика, вполне достаточно, чтобы закручивать саморезы в плотные породы дерева.

Последовательность операций при переделке:

  • Снимается со старого системного блока ПК блок питания, для этого надо отсоединить все шины с разъемами, идущие от него к другим платам, откручивается его корпус;

  • Вскрывается крышка металлического корпуса;
  • Откусываются разъемы с проводами на расстоянии 15-20 см от платы;

Важно! Не перекусывайте провода, идущие от платы к вентилятору, – не будет охлаждения, и БП быстро выйдет из строя.

  • На всех моделях бп этой серии цвета проводов распаиваются по стандартам, черный – корпус, желтые +12В, оранжевый + 3.3В, красный +5В;
  • Зеленый провод включения блока питания заводим на корпус (черный провод) через выключатель;

  • Надо отметить, что импульсный БП работает эффективно, когда все его выходы под нагрузкой, поэтому на выход +5В можно припаять лампочку, черный и красный провода, даже автомобильную на 12 В. Она не будет ярко светиться, этого и не требуется, главное, чтобы цепь была под нагрузкой. Аналогично поступаем с линией 3.3В – припаиваем на лампу в 5-10В оранжевый и черный провод. Одну из этих ламп можно вывести на лицевую панель как индикатор, что БП включен, и питание подано;

  • На шуруповерт пускаем черный провод к минусу в аккумуляторном отсеке и желтый подключаем к плюсу. Удаление гальванических банок из аккумуляторного отсека и пайка проводов осуществляются по методике, описанной ранее;

  • Оставшиеся лишние провода можно откусить или для надежности пустить параллельно в одной линии;
  • После подключения всех проводов включаем блок питания в сеть, если все сделано правильно, шуруповерт будет работать.

Надо отметить, что есть и другие способы собрать блоки питания на трансформаторе, выдающие полную мощность в 300-400Вт. В нашем случае рассматривались варианты, не требующие капиталовложений и больших знаний. В других случаях, когда делается блок питания для шуруповерта 18В своими руками, блок питания для шуруповерта 12В от ПК не подойдет. Можно определенными доработками повысить напряжение до 18 вольт, но это требует детального рассмотрения в отдельной статье, потребуются другие варианты, знания электротехники и практические навыки.

Видео

Те, кто использовал аккумуляторный шуруповерт – оценил его удобство. В любой момент, не путаясь в проводах, можно подлезть в труднодоступные ниши. Пока не разрядится .

Это первый недостаток – нуждается в регулярной подзарядке. Рано или поздно циклов перезаряда.

Это второй недостаток. Этот момент наступит тем раньше, чем дешевле ваш инструмент. Экономя средства при покупке, мы чаще всего приобретаем недорогие китайские «no-name» приборы.

В этом нет ничего зазорного, но следует отдавать себе отчет: производитель экономит так же, как и вы. Следовательно, самый дорогой блок (а это именно батарея) при комплектации будет самым дешевым. В результате мы получаем отличный инструмент с исправным двигателем и не изношенным редуктором, который не работает по причине некачественного аккумулятора.

Есть вариант приобрести новый комплект батарей, или заменить в блоке неисправные . Однако это бюджетное мероприятие. Стоимость сопоставима с покупкой .

Второй вариант – применение запасного или старого аккумулятора от автомобиля (если он у вас имеется). Но стартерная батарея имеет большой вес, и пользование таким тандемом не очень комфортно.

ВАЖНО! Многие шуруповерты имеют рабочее напряжение 16-19 вольт. Даже полностью заряженный автомобильный аккумулятор такого напряжения не обеспечит. А мы подразумеваем использование АКБ б/у, где на клеммах может быть максимум 10,5-11,5 вольт.

Выход есть – переделка шуруповерта в сетевой

Да, при этом теряется одно из преимуществ аккумуляторного инструмента – мобильность. Но для работ в помещениях с доступом к сети 220 вольт – это отличный выход. Тем более что вы даете новую жизнь сломанному инструменту.

Есть две концепции, как из аккумуляторного шуруповерта сделать сетевой:

  • Внешний блок питания. Идея не такая абсурдная, как может показаться. Даже крупный и тяжелый понижающий выпрямитель может просто стоять возле розетки. Вы одинаково привязаны к блоку питания, и к воткнутой сетевой вилке. А низковольтный шнур можно сделать любой длины;
  • ВАЖНО! Закон Ома гласит – при одинаковой мощности, уменьшая напряжение – повышаем силу тока!

    Соответственно, питающий шнур на 12-19 вольт должен быть с большим сечением, нежели на 220 вольт.

  • Блок питания в корпусе от аккумулятора. Мобильность сохраняется, вы ограничены лишь длиной сетевого кабеля. Единственная проблема – как втиснуть достаточно мощный трансформатор в небольшой корпус. Вопросы по поводу того, как работает магазинный компактный шуруповерт от сети – можно не задавать. Там изначально установлен мотор на 220 вольт. Снова вспоминаем закон Ома, и понимаем, что мощный электродвигатель на 220 вольт может быть компактным.

Аккумуляторный шуруповерт – удобный и необходимый в хозяйстве инструмент. При эксплуатации «от случая к случаю», он может верой и правдой служить многие годы. К сожалению, через 2-3 года, даже при не очень интенсивной эксплуатации, аккумуляторы шуруповерта практически полностью теряют свою емкость. Исправный инструмент, а пользоваться нельзя… Что делать?

Выбросить и купить новый. Самое разумное решение, если Вы эксплуатируете щуруповерт профессионально. А если он бывает нужен всего лишь несколько раз в году – починить забор, повесить полку и т.п. Рука не поднимается выбросить исправный аккумуляторный шуруповерт. Поиск в Интернете показал, что эта проблема волнует многих. Как же предлагают поступить в данной ситуации экономные россияне и жители братских республик.

Первое, самое очевидное решение - использовать внешний аккумулятор для питания шуруповерта. Старый автомобильный или герметичный свинцово-кислотный от ИБП. Но проблема в том, что шуруповерт даже на холостом ходу потребляет 1,5…3 А, а под полной нагрузкой потребляемый ток превышает 10 А. Придется использовать либо толстые, либо короткие соединительные провода. И то и другое неудобно. Разве что работать с аккумулятором в рюкзаке…

Второе решение – сетевой блок питания шуруповерта. Ведь в большинстве случаев работы ведутся в пределах досягаемости электрической розетки. Несколько теряется мобильность, но зато щуруповерт постоянно готов к работе. В качестве блока питания можно использовать обычный трансформатор с выпрямителем. Просто, но тяжело и громоздко. Компьютерный блок питания легче, но проблема с проводами остается. Кроме того, стабилизированный блок питания при работе на коллекторный электродвигатель с резко меняющейся нагрузкой и искрящими щетками может вести себя непредсказуемо.

Самое разумное, на мой взгляд, смонтировать сетевой блок питания в аккумуляторном отсеке шуруповерта. Кабель питания в этом случае может быть небольшого сечения, гибкий и легкий. При необходимости можно использовать стандартный сетевой удлинитель. Сложность в том, что места в аккумуляторном отсеке очень мало. Тем не менее, задача вполне выполнима. Подобная конструкция описана в журнале «Радио» №7 за 2011г. – К. Мороз. Сетевой блок питания для шуруповерта. Эта статья растиражирована на многих сайтах, но практическая проверка описанной в ней конструкции показала, что электронный трансформатор для галогенных ламп, который предлагает использовать автор, – не лучшее, в данном случае решение.

Генератор с самовозбуждением на двух транзисторах хорошо работает на активную нагрузку, а вот искрящий коллектор и резко меняющаяся нагрузка – тяжелое испытание для него. В общем, после выгорания нескольких транзисторов я отказался от дальнейших экспериментов с электронным трансформатором.

Лучшее решение мне удалось найти, на форуме http://forum.easyelectronics.ru/viewtopic.php?f=17&t=1773 . Его предлагает Дмитрий (dimm.electron) - под таким именем он зарегистрировался на форуме. Собранный по предложенной им схеме блок питания предназначен для установки в аккумуляторный отсек шуруповерта на 12 или 14 В, в котором находилось 10 или 12 никель-кадмиевых аккумуляторов. Схема блока показана на рисунке.

Учитывая, что это должна быть простая и дешевая конструкция «выходного дня» я слегка доработал авторский вариант. С целью экономии места исключил сетевой фильтр. Это конечно плохо, но учитывая, что пользоваться шуруповертом планирую не часто, и в основном вдали от радиоаппаратуры, вполне допустимо. Не хватило места также и для резистора, ограничивающего зарядный ток конденсаторов в момент включения в сеть. Тоже не очень хорошо, но оправдания те же самые…

В схеме максимально использованы детали от старого компьютерного блока питания. Это выпрямительный мостик VD1, конденсаторы C1, C2, трансформатор T1 и диодная сборка VD4. Силовые транзисторы тоже можно использовать от компьютерного блока питания, но они должны быть обязательно полевыми. В моем блоке они оказались биполярными, пришлось приобрести рекомендованные автором IRF840.

Еще одно упрощение – использование обычного выпрямителя VD4 на диодах Шоттки, вместо предлагаемого автором «хитрого» синхронного выпрямителя. Замечу, что необходимо использовать диодную сборку именно из диодов с барьером Шоттки. Отличить ее от обычной можно, если измерить мультиметром в режиме прозвонки прямое падение напряжения на диодах. На диодах Шоттки падает не более 0,2 В, тогда как на обычных диодах около 0,6 В. Учитывая ограниченные размеры радиатора нагрев обычных диодов будет недопустимым.

Ну и, наконец, питание микросхемы DD1 осуществляется через обычный гасящий резистор R3. Автор использует для этого еще одну «хитрую» схему – питание берется с точки соединения транзисторов VT3, VT4 через гасящий конденсатор и дополнительный выпрямитель на диодах. Сложно в наладке – надо довольно точно подбирать емкость конденсатора, он должен быть высоковольтным и термостабильным. Есть вероятность сжечь DD1.

В процессе обсуждения на форуме родился еще один вариант схемы питания – с дополнительной обмотки трансформатора. Это самый лучший вариант, бесполезный нагрев элементов минимален. Но на трансформаторе нужна дополнительная изолированная обмотка на 20-30 В.

Трансформатор – это самый важный элемент схемы блока питания шуруповерта, от качества его изготовления на 90% будет зависеть Ваше мнение об умственных способностях автора разработки. Если использовать первое попавшееся ферритовое кольцо неизвестной марки, ничего хорошего не получится. Кроме магнитной проницаемости у феррита есть и другие параметры, которые очень важны в данном случае. Необходимо использовать специально предназначенный для работы в сильных магнитных полях феррит, например от трансформаторов импульсных блоков питания компьютеров, телевизоров и др. аппаратуры мощностью не менее 200 Вт. Технология намотки тоже очень важна, автор подробно описывает, как должны быть расположены обмотки на сердечнике.

Я поступил проще – использовал готовый трансформатор от старого компьютерного блока питания. Он как раз подходит по всем параметрам. Лучше раскурочить старый блок мощностью 200-250 Вт, в нем высота трансформатора равна 35 мм – как раз помещается в аккумуляторном отсеке. Трансформаторы от более мощных блоков имеют большую высоту и не помещаются в моем корпусе.

Перед выпаиванием трансформатора нужно внимательно рассмотреть, как соединяются его обмотки и с каких выводов запитан выпрямитель +5 В. Тут возможны варианты, может потребоваться небольшая коррекция чертежа печатной платы блока питания шуруповерта. Обращаю внимание, что используется именно 5-и вольтовая обмотка, амплитуда напряжения на ней как раз около 12 В. Другие обмотки не используются.

А вот намотать на такой трансформатор дополнительную обмотку или изменить число витков существующих, к сожалению не получится. Трансформатор залит эпоксидкой и при его разборке велика вероятность сломать сердечник.

В микросхеме IR2153D между выводами 1 и 4 установлен стабилитрон на 15,6 В, поэтому питание нужно подавать обязательно через токоограничивающий резистор. Показанный на схеме пунктиром диод VD5 необходим только при использовании IR2153 без индекса «D». Конденсаторы C1, C2 можно заменить одним – 100…150 МК, 400 В. При его приобретении определяющий параметр – высота, желательно не более 35 мм, иначе может не поместиться в корпус.

Резистор R3 составлен из 4-х последовательно включенных по 8,2К, 2 Вт. Его номинал желательно подобрать при наладке так, чтобы при минимально возможном напряжении в сети, напряжение на конденсаторе C4 не падало ниже 11 В. Для уменьшения бесполезного нагрева номинал этого резистора должен быть максимально возможным, если его уменьшить, просто увеличится ток через этот резистор и внутренний стабилитрон микросхемы.

Элементы R5, R6, VD2, VD3, VT2, VT4 защищают полевые транзисторы от пробоя в случае аварийных режимов работы. Номинал C9 увеличивать не следует, т.к. это увеличит и без того большой бросок тока при включении в сеть. Мостик VD1 должен выдерживать ток не менее 5 А при напряжении 400 В. VD4 – сборка из диодов Шоттки с допустимым током не менее 30А. VD1 и VD4 отлично подходят от компьютерного блока питания. Вентилятор на 12 В, его внешние размеры 40х40 или 50х50 мм. Элементы в корпусах для поверхностного монтажа типоразмеров 0805 или 1206. DD1 в DIP корпусе, обратите внимание на надежность изоляции на плате между выводами 5 и 6.

Чертеж печатной платы показан на рисунке, вид со стороны печатных проводников. Перед ее изготовлением нужно разобрать имеющийся аккумуляторный отсек шуруповерта и убедиться, что плата в него вписывается. Скорее всего потребуется небольшая коррекция, т.к. отсеки у разных производителей имеют небольшие конструктивные отличия.

Силовые транзисторы VT1, VT3 и диодная сборка VD4 монтируются на небольших алюминиевых пластинках. Их габариты – по месту. В корпусе необходимо просверлить вентиляционные отверстия. Вентилятор придется разместить снаружи корпуса – без него длительная работа не гарантируется. Естественной вентиляции в данном случае недостаточно. И не забудьте про предохранитель FU1.

При первом включении блок лучше запитать от источника питания 20-25 В с током 100…200 МА. При этом резистор R3 временно шунтируется другим, с номиналом 1К. Если все нормально, на выходе будет 0,6…1 В. Можно посмотреть форму и частоту импульсов на вторичной обмотке трансформатора. Там должны быть прямоугольные импульсы со скважностью 50% и частотой 50…100 КГц. Частота определяется номиналами R4, C5.

Если все нормально, убираем временно установленный резистор 1К, включаем последовательно с блоком питания шуруповерта лампу накаливания на 60…100 Вт и включаем все это в сеть. В момент включения лампа кратковременно вспыхнет и погаснет, на выходе должно установиться напряжение около 12 В. Если все работает, убираем лампу и проверяем работу блока под нагрузкой около 1 Ом. Наконец, выбрасываем аккумуляторы, устанавливаем блок питания в корпус и проверяем работу шуруповерта в разных режимах.

Если эта конструкция Вас заинтересовала, можете ознакомиться с вариантами схемы от автора и его рекомендациями по самостоятельному изготовлению трансформатора. Также доступны для скачивания два моих варианта чертежа печатной платы в Sprint Layout.

mob_info